

Qualcomm® Hexagon™ LLDB Debugger
User Guide

80-N2040-31 Rev. E

February 22, 2022

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm and Hexagon are trademarks or registered trademarks of Qualcomm Incorporated. Other product and brand names may
be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

©2014, 2015, 2020-2022 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

80-N2040-31 Rev. E 2

Contents

1 Introduction .. 6
1.1 Features ..6
1.2 Conventions ..6
1.3 Technical assistance ..7

2 Get started .. 8
2.1 Start the debugger..8
2.2 Debug commands ...8

2.2.1 Command arguments..9
2.2.2 Breakpoints ...9
2.2.3 Completion..10
2.2.4 Help ...10
2.2.5 Aliases ...11
2.2.6 Raw commands ...11
2.2.7 Python interpreter ..12

2.3 Load a program...12
2.4 Set breakpoints ...12
2.5 Set watchpoints ..14
2.6 Start your program ...15
2.7 Control your program ...16
2.8 Examine the thread state..18
2.9 Examine the stack frame state..19

3 Use the debugger... 21
3.1 Start the debugger..21

3.1.1 Command line arguments ...21
3.1.2 Command files ..22
3.1.3 Debug a remote application..22

3.2 Debug options...23
3.3 Debug commands ...25

3.3.1 Command options...25
3.3.2 Execution commands ..25
3.3.3 Breakpoint commands ..27
3.3.4 Watchpoint commands ...28
3.3.5 Examine the variables ...29
3.3.6 Evaluate the expressions ...30
3.3.7 Examine the thread state ..31
3.3.8 Executable and shared library query commands ..34
3.3.9 Miscellaneous commands...35

80-N2040-31 Rev. E 3

Qualcomm Hexagon LLDB Debugger User Guide Contents

4 Frame and thread formatting .. 36
4.1 Stack frame and thread format...36
4.2 Format strings...36

4.2.1 Variables..37
4.2.2 Control characters ...38
4.2.3 Desensitizing characters..38
4.2.4 Scoping ..38

4.3 Format example..39
4.4 User-defined formats ..40

5 Frame symbolication ... 42
5.1 Manual symbolication with LLDB..42
5.2 Define load addresses for sections ...44
5.3 Load multiple executables ..44
5.4 Get variable information...46
5.5 Use Python API to symbolicate ...47
5.6 Use built-in Python module to symbolicate..48

6 Variable formatting... 49
6.1 Variable display...49
6.2 Type formats ...50

6.2.1 Options..51
6.3 Type summaries..55

6.3.1 Summary strings..55
6.3.2 Formatting summary elements ...57
6.3.3 Bit fields and array syntax ...58

6.4 Python scripts ...60
6.5 Regular expression type names ..62
6.6 Named summaries..63
6.7 Synthetic children ...64
6.8 Filters ..67
6.9 Categories ...67
6.10 Finding formatters 101 ...69

7 Python scripting... 70
7.1 LLDB API..70
7.2 Embedded Python interpreter... 71
7.3 Run a script when a breakpoint is hit ...73
7.4 Create new command using a Python function..75

8 Script example.. 78
8.1 The test program and input ..78
8.2 The bug ...78
8.3 Check for the word in the tree: use DFS ...79
8.4 Work with program variables in Python ...80
8.5 Explanation of the DFS script..81

80-N2040-31 Rev. E 4

Qualcomm Hexagon LLDB Debugger User Guide Contents

8.6 Use the DFS script ...82
8.7 Use breakpoint command scripts ...84
8.8 Python breakpoint command scripts..84
8.9 Decision point breakpoint commands ..85
8.10 Use breakpoint commands ...86
8.11 Source files for the example ...88

9 Debug with the booter image.. 89

10 Troubleshooting... 90
10.1 Breakpoints on target are not being hit..90
10.2 File and line breakpoints are not being hit ...91
10.3 Check for debug symbols..92

11 Architecture .. 93

A Acknowledgments... 94

80-N2040-31 Rev. E 5

Qualcomm Hexagon LLDB Debugger User Guide Tables

Tables
Table 3-1 LLDB execution commands ...25
Table 3-2 LLDB breakpoint commands ...27
Table 3-3 LLDB watchpoint commands...28
Table 3-4 LLDB commands for examining variables..29
Table 3-5 LLDB commands for evaluating expressions ...30
Table 3-6 LLDB commands for examining the thread state ..31
Table 3-7 LLDB commands for querying executable and shared libraries34
Table 3-8 Miscellaneous LLDB commands..35
Table 4-1 Format string variables..37
Table 6-1 Special format markers ...57
Table 7-1 Python convenience variables.. 71
Table 7-2 Python breakpoint function arguments ..73
Table 7-3 Python command function arguments ...75

80-N2040-31 Rev. E 6

1 Introduction

This document describes a debugger for the Qualcomm® Hexagon™ processor architecture. It
is based on the LLDB debugger that was developed as part of the LLVM project. The debugger
works with the Hexagon software development tools and utilities to provide a complete
programming system for developing high-performance software.

The LLDB debugger runs on the Windows and Linux platforms.

NOTE: The debugger is commonly referred to as LLDB.

1.1 Features
LLDB offers the following features:

■ High performance

■ Efficient memory use

■ Extensible (using Python)

■ Multi-threaded debugging support

■ Remote debugging

■ Supports C and C++

1.2 Conventions
Computer text, code names, and code samples appear in a different font, for example,
code_<function_name>().

The following notation is used to define command syntax:

■ Square brackets enclose optional items, for example, [label].

■ Bold indicates literal symbols, for example, [comment].

■ The vertical bar character, |, indicates a choice of items.

■ Parentheses enclose a choice of items for example, (add|del).

■ An ellipsis, ... , follows items that can appear more than once.

80-N2040-31 Rev. E 7

Qualcomm Hexagon LLDB Debugger User Guide Introduction

1.3 Technical assistance
For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to CreatePoint, register for access or send email to
qualcomm.support@qti.qualcomm.com.

https://createpoint.qti.qualcomm.com
https://createpoint.qti.qualcomm.com

80-N2040-31 Rev. E 8

2 Get started

This chapter assumes you are familiar with the GDB debugger commands.

2.1 Start the debugger
To start LLDB from a command line, enter:

hexagon-lldb program

Where program is the name of an executable Hexagon file.

Once started, LLDB displays a command line:
(lldb)

To perform a debug command, type the command name into the command line and press
Return.

After the command is performed, the command line reappears. It will continue to reappear
after every debug command until you perform a command that exits LLDB.

2.2 Debug commands
Compared to the GDB command set, which is rather free-form, the LLDB command syntax is
structured. All commands have the following form:

noun verb [-options [option-value]] [argument [argument...]]

The command line parsing is performed before the command execution, so it is uniform
across all commands. The syntax for basic commands is quite simple: arguments, options, and
option values are all separated by white spaces, and double quotes are used to protect white
spaces in an argument. To put a backslash or double quote character in an argument, prefix it
with a backslash in the argument. This makes the command syntax more regular, but it also
means you might need to quote some arguments in LLDB that you would not in GDB.

80-N2040-31 Rev. E 9

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.2.1 Command arguments
LLDB attempts to reduce the number of special purpose argument parsers that are required,
which sometimes forces you to be more explicit when specifying a command.

For instance, to set a breakpoint in GDB, enter the following to break at line 12 of foo.c:
(gdb) break foo.c:12

And enter the following to break at the function foo:
(gdb) break foo

The argument parser that GDB uses to distinguish foo.c:12 from foo from foo.c::foo
(which specifies the function foo in the file foo.c) is complex. As a result, cases exist in GDB
where it is virtually impossible to specify the function you want to break on, especially when
using C++.

By comparison, LLDB commands are more verbose but also more precise, and they allow for
intelligent auto-completion.

To set the same file and line breakpoint in LLDB, you can enter either of the following
commands:

(lldb) breakpoint set --file foo.c --line 12
(lldb) breakpoint set -f foo.c -l 12

To set a breakpoint on a function named foo, you can enter either of the following
commands:

(lldb) breakpoint set --name foo
(lldb) breakpoint set -n foo

You can specify the --name option multiple times to set a breakpoint on a group of functions.
This is convenient because it enables you to set common conditions or commands without
specifying them multiple times. For example:

(lldb) breakpoint set --name foo --name bar

2.2.2 Breakpoints
In LLDB, you can set a breakpoint at a function using a method name. For instance, to set a
breakpoint on all C++ methods named foo, you can use either of the following commands:

(lldb) breakpoint set --method foo
(lldb) breakpoint set -M foo

To limit any breakpoints to a specific executable image, use the command option, --shlib
path (or -s path for short). For example:

(lldb) breakpoint set --shlib foo.dylib --name foo
(lldb) breakpoint set -s foo.dylib -n foo

You can repeat the --shlib option to specify several shared libraries.

80-N2040-31 Rev. E 10

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.2.3 Completion
Like GDB, the LLDB command interpreter performs the shortest unique string match on
command names, so the following two commands will both execute the same command:

(lldb) breakpoint set -n "-[SKTGraphicView alignLeftEdges:]"
(lldb) br s -n "-[SKTGraphicView alignLeftEdges:]"

LLDB also supports command completion for source file names, symbol names, file names,
and so on. Press the Tab key to initiate completion.

NOTE: Tab completion is not supported in Windows.

Individual options in a command can have different completers. For example, in the
breakpoint command, --file completes to source files, --shlib completes to currently
loaded shared libraries, and so on.

You can also do things like this: if you specify --shlib and are completing on --file, LLDB
will list only the source files in the shared library specified by --shlib.

2.2.4 Help
The individual LLDB commands are extensively documented. Use the help command to get
an overview of which commands are available, or to obtain details on specific commands.

There is also an apropos command, which searches the help text for all commands for a
specified word, and then dumps a summary help string for each matching command.

In some cases, the LLDB help system can provide information on the individual arguments of
a command. For example:

(lldb) help break command add
Add a set of commands to a breakpoint, to be executed whenever the
breakpoint is hit.
Syntax: breakpoint command add <cmd-options> <breakpt-id>
etc...

When you see command arguments specified with angle brackets in the command syntax
(such as <breakpt-id> in the example above), this indicates a common argument type that
you can get further help on:

(lldb) help <breakpt-id>
<breakpt-id> -- Breakpoint ID's consist major and minor numbers; the
major ...

80-N2040-31 Rev. E 11

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.2.5 Aliases
LLDB provides a mechanism for defining aliases for commonly used commands. For example,
instead of entering this command:

(lldb) breakpoint set --file foo.c --line 12

You can enter the following commands:
(lldb) command alias bfl breakpoint set -f %1 -l %2
(lldb) bfl foo.c 12

Several aliases are predefined for the commonly used commands (such as step, next, and
continue). However, you can customize the LLDB command set in any way, and because
LLDB reads the ~/.lldbinit file at startup, you can store all your aliases in this file so they
are available to you.

NOTE: Your aliases are also documented in the help command, so you can remind yourself
which aliases you have defined.

One of the predefined aliases is a weak emulator of the GDB break command. This command
does not try to do everything the GDB break command can do (for example, it does not
handle foo.c::bar). But it mostly works, and it makes the transition easier from GDB to
LLDB.

For convenience, the break command is aliased to b. But if you want to learn the LLDB
command that is set natively, the b alias will get in the way of using the rest of the LLDB
breakpoint commands.

Fortunately, if you do not like a predefined alias, you an delete it with the unalias command.
For example:

(lldb) command unalias b

Once the command alias is freed, use the following command to run the native LLDB
breakpoint command with just b:

(lldb) command alias b breakpoint

2.2.6 Raw commands
The LLDB command parser supports raw commands where, after any command options are
stripped off, the rest of the command string is passed uninterpreted to the command. Raw
commands are convenient for commands whose arguments might be a complex expression
that would be painful to protect with backslashes.

For example, the expression command is a raw command for obvious reasons. The help
output for a command will tell you if the command is raw or not, so you know what to expect.

When using raw commands, remember that raw commands can still have options. If your
command string has any dashes in it, you must indicate that they are not option markers by
putting -- after the command name but before your command string. For example:

watch set expr --size 8 -- 0x3fefff00

80-N2040-31 Rev. E 12

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.2.7 Python interpreter
LLDB has a built-in Python interpreter, which is accessible with the script command. All the
functionality of the debugger is available as classes in the Python interpreter. Thus, the more
complex commands that in GDB you would introduce with the define command can be
performed in LLDB by writing Python functions using the lldb-Python library. Then load the
scripts into your running session and access them with the script command.

2.3 Load a program
As with GDB, you can use a single command to both start LLDB and specify the file to debug:

$ lldb /Projects/Sketch/build/Debug/Sketch.app
Current executable set to '/Projects/Sketch/build/Debug/Sketch.app'
(x86_64).

Or, you can us the file command to specify the file after the fact:
$ lldb
(lldb) file /Projects/Sketch/build/Debug/Sketch.app
Current executable set to '/Projects/Sketch/build/Debug/Sketch.app'
(x86_64).

2.4 Set breakpoints
To see all the options available for setting a breakpoint, use the help breakpoint set
command. For example:

(lldb) breakpoint set --selector alignLeftEdges:
Breakpoint created: 1: name = 'alignLeftEdges:', locations = 1,
resolved = 1

You can list the breakpoints that you already set:
(lldb) breakpoint list
Current breakpoints:
1: name = 'alignLeftEdges:', locations = 1, resolved = 1
 1.1: where = Sketch`-[SKTGraphicView alignLeftEdges:] + 33
 at /Projects/Sketch/SKTGraphicView.m:1405, address =
0x0000000100010d5b, resolved, hit count = 0

Setting a breakpoint creates a logical breakpoint, which can resolve to one or more actual
locations. For example, break by selector sets a breakpoint on all the methods that
implement that selector in the classes in your program. Similarly, a file and line breakpoint
might result in multiple locations if that file and line are inlined in different places in your
code.

A logical breakpoint has an integer identifier, and its locations have an identifier within their
parent breakpoint. The two identifiers are joined by the a . character. For example, see the
1.1 string in the example above.

Also, logical breakpoints remain live, so if another shared library is loaded and it has another
implementation of the alignLeftEdges: selector, the new location is added to breakpoint 1
(in this case, a breakpoint named 1.2 is set on the newly loaded selector).

80-N2040-31 Rev. E 13

Qualcomm Hexagon LLDB Debugger User Guide Get started

The other piece of information provided in a breakpoint listing is whether the breakpoint
location was resolved or not. A location is resolved when the file address to which it
corresponds is loaded into the program you are debugging. For example, if you set a
breakpoint in a shared library that subsequently is unloaded, that breakpoint location
remains but it is no longer be resolved.

GDB users should note that LLDB works like GDB does after using this command:
(gdb) set breakpoint pending on

That is, LLDB always makes a breakpoint from your specification, even if it cannot find any
locations that match the specification. You can tell whether an expression was resolved by
checking the locations field in breakpoint list.

A breakpoint is reported as pending when you set it, so you can more easily determine if you
have made a typo (if that was the reason no locations were found):

(lldb) breakpoint set --file foo.c --line 12
Breakpoint created: 2: file ='foo.c', line = 12, locations = 0
(pending)
WARNING: Unable to resolve breakpoint to any actual locations.

You can delete, disable, set conditions on, and ignore counts either on all the locations
generated by your logical breakpoint, or on one location your specification resolved to. For
example, the following command prints a backtrace when the breakpoint is hit:

(lldb) breakpoint command add 1.1
Enter your debugger command(s). Type 'DONE' to end.
> bt
> DONE

By default, breakpoint command add accepts LLDB commands on the command line. You
can also specify this explicitly by passing the --command option. To implement your
breakpoint command using the Python script, use the --script option instead.

80-N2040-31 Rev. E 14

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.5 Set watchpoints
In addition to breakpoints, you can use the help watchpoint command to see all the
commands for watchpoint manipulations.

For example, the following command watches a variable named global for a write
operation, but it stops only if the condition (global==5) is true:

(lldb) watch set var global
Watchpoint created: Watchpoint 1: addr = 0x100001018 size = 4
 state = enabled type = w
 declare @ '/Volumes/data/lldb/svn/ToT/test/functionalities/
 watchpoint/watchpoint_commands/condition/main.cpp:12'
(lldb) watch modify -c '(global==5)'
(lldb) watch list
Current watchpoints: Watchpoint 1: addr = 0x100001018 size = 4 state =
enabled type = w
 declare @ '/Volumes/data/lldb/svn/ToT/test/functionalities/
 watchpoint/watchpoint_commands/condition/main.cpp:12'
 condition = '(global==5)'
(lldb) c
Process 15562 resuming
(lldb) about to write to 'global'...
Process 15562 stopped and was programmatically restarted.
Process 15562 stopped and was programmatically restarted.
Process 15562 stopped and was programmatically restarted.
Process 15562 stopped and was programmatically restarted.
Process 15562 stopped
* thread #1: tid = 0x1c03, 0x0000000100000ef5 a.out`modify + 21 at
main.cpp:16, stop reason = watchpoint 1
frame #0: 0x0000000100000ef5 a.out`modify + 21 at main.cpp:16
 13
 14 static void modify(int32_t &var) {
 15 ++var;
-> 16 }
 17
 18 int main(int argc, char** argv) {
 19 int local = 0;
(lldb) bt
* thread #1: tid = 0x1c03, 0x0000000100000ef5 a.out`modify + 21 at
main.cpp:16, stop reason = watchpoint 1
 frame #0: 0x0000000100000ef5 a.out`modify + 21 at main.cpp:16
 frame #1: 0x0000000100000eac a.out`main + 108 at main.cpp:25
 frame #2: 0x00007fff8ac9c7e1 libdyld.dylib`start + 1
(lldb) frame var global
(int32_t) global = 5
(lldb) watch list -v
Current watchpoints:
Watchpoint 1: addr = 0x100001018 size = 4 state = enabled type = w
declare @
'/Volumes/data/lldb/svn/ToT/test/functionalities/watchpoint/
watchpoint_commands/condition/main.cpp:12'
 condition = '(global==5)'
 hw_index = 0 hit_count = 5 ignore_count = 0
(lldb)

80-N2040-31 Rev. E 15

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.6 Start your program
To launch a program in LLDB, use the process launch command or one of its built-in aliases.
For example:

(lldb) process launch
(lldb) run
(lldb) r

NOTE: The process launch command automatically launches the Hexagon simulator and
connects LLDB to it.

After you launch a process, your process might stop somewhere:
(lldb) process launch
Hexagon-sim INFO: the rev_id used in the simulation is 0x00002105
(v5a)
hexagon-sim WARNING: StartGDBserver:Setting up GDB server on port
10437
Process 1 stopped
Process 1 launched: './factorial' (hexagon)
Process 1 stopped
* thread #1: tid = 0x0001, 0x00004130 factorial`main(argc=1,
argv=0x0000b100) + 28 at factorial.c:32, stop reason = breakpoint 1.1
 frame #0: 0x00004130 factorial`main(argc=1, argv=0x0000b100) + 28
at factorial.c:32

NOTE: After a process is launched, the simulator output will be mixed with the LLDB output.

80-N2040-31 Rev. E 16

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.7 Control your program
After a program is launched, it can execute until it hits a breakpoint. The basic commands for
controlling execution are all variations of the thread command. For example:

(lldb) thread continue
Resuming thread 0x2c03 in process 46915
Resuming process 46915
(lldb)

Currently you can only operate on one thread at a time. However, in the future, LLDB will
support commands of the form step over the function in thread 1, step into the function in
thread 2, and continue thread 3, and so on. When LLDB eventually supports some threads
running while others are stopped, this will be particularly important.

For convenience, all the stepping commands have simple command aliases. For instance, the
alias for thread continue is just the letter c.

The other program stepping commands are mostly the same as in GDB:

By default, LLDB defines aliases for all the common GDB control commands (s, step, n, next,
finish). If any are missing, you can add them to your ~/.lldbinit file using the command
alias command.

LLDB also supports the step by instruction command variants:

Finally, LLDB includes a run until line or frame exit stepping mode:
(lldb) thread until 100

This command either runs the thread in the current frame until it reaches line 100 in this
frame, or it stops if it leaves the current frame. This behavior is almost equivalent to the GDB
until command.

By default, a process shares the LLDB terminal with the inferior process. In this mode (like
when debugging with GDB), when the process is running, anything you type goes to the
standard input of the inferior process. To interrupt the inferior program, press Ctrl+C.

LLDB command GDB command
thread step-in step

s

thread step-over next
n

thread step-out finish
f

LLDB command GDB command
thread step-inst stepi

si

thread step-over-inst nexti
ni

80-N2040-31 Rev. E 17

Qualcomm Hexagon LLDB Debugger User Guide Get started

If you launch a process with the --no-stdin option, the command interpreter is always
available to enter commands. This allows you to set a breakpoint, for example. without
explicitly interrupting the program you are debugging:

(lldb) process continue
(lldb) breakpoint set --name stop_here

NOTE: For GDB users, it might seem odd to always have the (lldb) prompt.

Many LLDB commands do not work while a program is running; the command interpreter
should notify you when this is the case. (If you find any instances where the command
interpreter is not doing its job, please file a bug report.)

The commands that work while a program is running include:

■ Interrupting the process to halt execution (process interrupt)

■ Getting the process status (process status)

■ Setting and clearing the breakpoint (breakpoint
[set|clear|enable|disable|list] ...)

■ Reading and writing memory (memory [read|write] ...)

The issue of disabling stdio while running is a good opportunity to show how to set
debugger properties in general. If you always want to run in the --no-stdin mode, you can
set it as a generic process property using the LLDB settings command, which is equivalent
to the GDB set command. For example, in this case you can specify the following command:

(lldb) settings set target.process.disable-stdio true

Over time, the GDB set command was expanded into many disordered options, such that
there were useful options that even experienced GDB users did not know about because
these options were too hard to find.

By contrast, LLDB organizes the settings hierarchically, using the structure of the basic entities
in the debugger. Anywhere you can specify a setting on a generic entity (such as threads), you
can also apply the option to a specific instance, which can be convenient in some cases.

You can view the available settings with settings list, and the settings command
provides help explaining how the command works.

80-N2040-31 Rev. E 18

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.8 Examine the thread state
When you stop a program, LLDB chooses a current thread (usually the one that stopped for a
reason), and a current frame in that thread (on stop, this is always the bottom-most frame).
Many of the commands that are used to inspect state choose their current thread/frame in
this way.

To inspect the current state of your process, start with listing the threads:
(lldb) thread list
Process 46915 state is Stopped
* thread #1: tid = 0x2c03, 0x00007fff85cac76a, where =
libSystem.B.dylib`__getdirentries64 +10, stop reason = signal =
SIGSTOP, queue = com.apple.main-thread
 thread #2: tid = 0x2e03, 0x00007fff85cbb08a, where =
libSystem.B.dylib`kevent + 10, queue = com.apple.libdispatch-manager
 thread #3: tid = 0x2f03, 0x00007fff85cbbeaa, where =
libSystem.B.dylib`__workq_kernreturn + 10

The * in this listing indicates that thread 1 is the current thread.

To list the backtrace for that thread, use the thread backtrace command:
(lldb) thread backtrace
thread #1: tid = 0x2c03, stop reason = breakpoint 1.1, queue =
com.apple. main-thread
frame #0: 0x0000000100010d5b, where = Sketch`-[SKTGraphicView
alignLeftEdges:] + 33 at /Projects/Sketch/SKTGraphicView.m:1405
frame #1: 0x00007fff8602d152, where = AppKit`-[NSApplication
sendAction: to:from:] + 95
frame #2: 0x00007fff860516be, where = AppKit`-[NSMenuItem
_corePerformAction] + 365
frame #3: 0x00007fff86051428, where = AppKit`-[NSCarbonMenuImpl
performActionWithHighlightingForItemAtIndex:] + 121
frame #4: 0x00007fff860370c1, where = AppKit`-[NSMenu
performKeyEquivalent:] + 272
frame #5: 0x00007fff86035e69, where = AppKit`-[NSApplication
_handleKeyEquivalent:] + 559
frame #6: 0x00007fff85f06aa1, where = AppKit`-[NSApplication
sendEvent:] + 3630
frame #7: 0x00007fff85e9d922, where = AppKit`-[NSApplication run] +
474
frame #8: 0x00007fff85e965f8, where = AppKit`NSApplicationMain + 364
frame #9: 0x0000000100015ae3, where = Sketch`main + 33 at /Projects/
Sketch/SKTMain.m:11
frame #10: 0x0000000100000f20, where = Sketch`start + 52

You can also provide a list of threads to backtrace, or the all keyword to see all threads:
(lldb) thread backtrace all

You can select the current thread (which will be used by default in all the commands in
Section 2.9) with the thread select command:

(lldb) thread select 2

Where the thread index is only the one shown in the thread list listing.

80-N2040-31 Rev. E 19

Qualcomm Hexagon LLDB Debugger User Guide Get started

2.9 Examine the stack frame state
Use the frame variable command to display a stack frame’s arguments and local variables.
For example:

(lldb) frame variable
self = (SKTGraphicView *) 0x0000000100208b40
_cmd = (struct objc_selector *) 0x000000010001bae1
sender = (id) 0x00000001001264e0
selection = (NSArray *) 0x00000001001264e0
i = (NSUInteger) 0x00000001001264e0
c = (NSUInteger) 0x00000001001253b0

As shown in this example, if you do not specify any variable names, all arguments and locals
are displayed. If you invoke the frame variable command with the names of specific locals,
only those variables are printed. For example:

(lldb) frame variable self
(SKTGraphicView *) self = 0x0000000100208b40

You can also specify the path to a sub-element of one of the available locals, and that sub-
element is printed:

(lldb) frame variable self.isa
(struct objc_class *) self.isa = 0x0000000100023730

The frame variable command is not a full expression parser, but it does support a few
basic operators such as &, *, ->, [] (no overloaded operators). Use the array brackets on
pointers to treat pointers as arrays:

(lldb) frame variable *self
(SKTGraphicView *) self = 0x0000000100208b40
(NSView) NSView = {
(NSResponder) NSResponder = {
...

(lldb) frame variable &self
(SKTGraphicView **) &self = 0x0000000100304ab

(lldb) frame variable argv[0]
(char const *) argv[0] = 0x00007fff5fbffaf8
"/Projects/Sketch/build/Debug/Sketch.app/Contents/MacOS/Sketch"

The frame variable command also performs object printing operations on variables.
Enable this feature by using the -O option with the frame variable command:

(lldb) frame variable -O self (SKTGraphicView *)
 self = 0x0000000100208b40
<SKTGraphicView: 0x100208b40>

Use the frame select command to select another stack frame to display:
(lldb) frame select 9
frame #9: 0x0000000100015ae3, where = Sketch`function1 + 33 at
 /Projects/Sketch/SKTFunctions.m:11

80-N2040-31 Rev. E 20

Qualcomm Hexagon LLDB Debugger User Guide Get started

You can also move up or down the stack by using the --relative (-r) option with the frame
select command. Also, the predefined command aliases u and d work like their GDB
equivalents.

To view more complex data or change program data, use the expression command. It takes
an expression and evaluates it in the scope of the currently selected frame. For example:

(lldb) expr self
$0 = (SKTGraphicView *) 0x0000000100135430
(lldb) expr self = 0x00
$1 = (SKTGraphicView *) 0x0000000000000000
(lldb) frame var self
(SKTGraphicView *) self = 0x0000000000000000

You can also call functions:
(lldb) expr (int) printf ("I have a pointer 0x%llx.\n", self)
$2 = (int) 22
I have a pointer 0x0.

The expression command is one of the raw commands, which means you are not required
to quote your entire expression, backslash protect the quote marks, and so on.

Finally, the results of the expressions are stored in persistent variables (of the form $[0-9]+)
that you can use in more expressions:

(lldb) expr self = $0
$4 = (SKTGraphicView *) 0x0000000100135430

80-N2040-31 Rev. E 21

3 Use the debugger

The LLDB debugger debugs C and C++ programs written for the Hexagon processor.

3.1 Start the debugger
To start LLDB from a command line, enter:

hexagon-lldb program [option...]

Where:

❒ program is the name of an executable Hexagon file

❒ option indicates the LLDB options (see Section 3.2)

NOTE: The program file can alternatively be specified on the command line using the LLDB
--file option.

3.1.1 Command line arguments
Command line arguments in LLDB are complicated by the fact that arguments might be
required to be passed to three different entities:

■ The LLDB itself

■ The Hexagon simulator (which is launched by LLDB)

■ The program that is being debugged

To distinguish these sets of command line items, all the LLDB arguments and options are
specified first on the command line, followed by all the simulator arguments and options,
followed by all the program arguments and options. Each set of items is separated on the
command line by an instance of the -- character sequence. For example:

hexagon-lldb program [option...] -- sim_args -- program_args

NOTE: The program name specified for LLDB is automatically passed to the simulator, so you
can specify it only once on the command line.

In the following example, -- is used to separate the LLDB foo.elf argument from the
simulator -mv5 command option from the program bar argument.

hexagon-lldb foo.elf -- -mv5 -- bar

foo.elf is automatically passed to the simulator as the name of the file to run.

80-N2040-31 Rev. E 22

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.1.2 Command files
When LLDB starts up, it reads debug settings, commands, and command aliases from the
following three command files, in the specified order:

1. .lldbinit-debugger

When using a command line interface, this file is named .lldbinit-hexagon-lldb.
When using LLDB in Eclipse, it is named .lldbinit-hexagon-lldb-mi.

This file is a useful place for storing settings that you want to apply only when a given
command interpreter is used.

2. ~/.lldbinit

3. .lldbinit

This file is assumed to be stored in the current working directory (that is, where LLDB was
started).

3.1.3 Debug a remote application
LLDB can debug an application already running on the Hexagon simulator, if the simulator was
launched with a unique port number.

1. Launch the simulator that is running the application to be debugged, using the -G switch
to identify a unique port number:
hexagon-sim -G Port# program sim_args

The simulator loads the program with the sim_args, but it pauses the program at the
beginning.

2. Start LLDB from the command line in a separate terminal or machine:
hexagon-lldb program [option...]

Where program is the same file loaded by the simulator.

3. At the (lldb) prompt, enter the command:
(lldb) gdb-remote host:Port#

Where:

❒ host: is the name of the machine on which hexagon-sim is running, if the machine is
different from where LLDB is running

❒ Port# is the port number used when launching the simulator

4. When the debugger establishes a connection to the simulator, proceed with typical
debug operations.

NOTE: All input and output performed by the application occurs where the simulator is
running.

80-N2040-31 Rev. E 23

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.2 Debug options
LLDB supports the following debug options to control various LLDB features from the
command line when LLDB is first launched.
-e | --editor
-f filename | --file filename
-h | --help
-o cmdname | --one-line cmdname
-O cmdname | --one-line-before-file cmdname
-Q | --source-quietly
-s filename | --source filename
-S filename | --source-before-file filename
-v | --version
-x | --no-lldbinit

Descriptions

-e
--editor

Open all program source files using the host’s external editor mechanism.

-f filename
-file filename

Specify the executable file to launch.
If this option is not specified, LLDB uses the first argument on the command line as
the name of the executable file to launch.

-h
--help

Print the usage information for the debugger.

-o cmdname
--one-line cmdname

Execute the specified LLDB command immediately after LLDB loads the executable
file specified on the command line.
The specified command must fit on one line.
You can use this option multiple times. The specified commands are executed in the
order (from left to right) that they appear on the command line.

-O cmdname
--one-line-before-file cmdname

Execute the specified LLDB command immediately before LLDB loads the executable
file specified on the command line.
The specified command must fit on one line.
You can use this option multiple times. The specified commands are executed in the
order (from left to right) that they appear on the command line.

80-N2040-31 Rev. E 24

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

-Q
--source-quietly

Suppress the display output generated by any LLDB commands that are specified with
the -o, -O, -s, or -S commands.

-s filename
-source filename

Execute the specified LLDB commands immediately after LLDB loads the executable
file specified on the command line.
The specified file is a text file containing a list of the command names to execute.
You can use this option multiple times. The specified commands are executed in the
order (from left to right) that they appear on the command line.

-S filename
-source-before-file filename

Execute the specified LLDB commands immediately before LLDB loads the executable
file specified on the command line.
The specified file is a text file containing a list of the command names to execute.
You can use this option multiple times. The specified commands are executed in the
order (from left to right) that they appear on the command line.

-v
--version

Print the version number of the debugger.

-x
--no-lldbinit

Do not automatically parse any.lldbinit files.

80-N2040-31 Rev. E 25

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3 Debug commands
This section lists the LLDB commands by category, along with their GDB equivalents (which in
many cases are identical).

Command names can be shortened in LLDB if they uniquely identify the command. For
example, to invoke the breakpoint set command, enter br se.

NOTE: The tlb, pagetable, pv8, pv16, and pv32 commands are specific to the Hexagon
version of LLDB. They are implemented in the hexagon_utils.py script.

3.3.1 Command options
Many LLDB debug commands accept options that resemble the command line options used
to start the debugger itself. These options are command-specific: they work only with the
debug commands for which they are defined.

You can specify debug command options anywhere on the command line, but if any
command arguments begin with a - character, LLDB will not be able to distinguish the
command options from the command arguments. In this case, all the options must be
specified before the arguments, and the two sets of items must be separated with the --
character sequence.

In this example, -- is used to separate the --stop-at-entry command option from the
-program-arg command argument:

(lldb) process launch --stop-at-entry -- -program_arg value

3.3.2 Execution commands

Table 3-1 LLDB execution commands

GDB LLDB
Launch process with no arguments
(gdb) run
(gdb) r

(lldb) process launch
(lldb) run
(lldb) r

Launch process with arguments
(gdb) run args
(gdb) r args

(lldb) process launch -- args
(lldb) r args

Launch process with arguments a.out 1 2 3, without supplying arguments every time
% gdb --args a.out 1 2 3
(gdb) run
...
(gdb) run
...

% lldb -- a.out 1 2 3
(lldb) run
...
(lldb) run
...

80-N2040-31 Rev. E 26

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

Or
(gdb) set args 1 2 3
(gdb) run
...
(gdb) run
...

(lldb) settings set target.run-args 1 2 3
(lldb) run
...
(lldb) run
...

Set the nvironment variables for process before launching
(gdb) set env DEBUG 1 (lldb) settings set target.env-vars DEBUG=1

(lldb) set se target.env-vars DEBUG=1
(lldb) env DEBUG=1

Unset the environment variables for process before launching
(gdb) unset env DEBUG (lldb) settings remove target.env-vars DEBUG

(lldb) set rem target.env-vars DEBUG

Show the arguments that will be or were passed to the program when run
(gdb) show args

Argument list to give a program being debugged
when it is started is 1 2 3.

(lldb) settings show target.run-args
target.run-args (array of strings) =
[0]: "1"
[1]: "2"
[2]: "3"

Set the environment variables for process, and launch process in one command
(lldb) process launch -v DEBUG=1

Attach to the remote GDB protocol server running on system eorgadd, port 8000
(gdb) target remote eorgadd:8000 (lldb) gdb-remote eorgadd:8000

Attach to the remote GDB protocol server running on local system, port 8000
(gdb) target remote localhost:8000 (lldb) gdb-remote 8000

Attach to the Darwin kernel in kdp mode on system eorgadd
(gdb) kdp-reattach eorgadd (lldb) kdp-remote eorgadd

Launch the simulator with the current target, and connect to it
(lldb) run

Do a source level single step in the currently selected thread
(gdb) step
(gdb) s

(lldb) thread step-in
(lldb) step
(lldb) s

Do a source level single step over in the currently selected thread
(gdb) next
(gdb) n

(lldb) thread step-over
(lldb) next
(lldb) n

Do an instruction-level single step in the currently selected thread
(gdb) stepi
(gdb) si

(lldb) thread step-inst
(lldb) si

Do an instruction-level single step over in the currently selected thread
(gdb) nexti
(gdb) ni

(lldb) thread step-inst-over
(lldb) ni

Table 3-1 LLDB execution commands (cont.)

GDB LLDB

80-N2040-31 Rev. E 27

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.3 Breakpoint commands

Step out of the currently selected frame
(gdb) finish (lldb) thread step-out

(lldb) finish

Return immediately from the currently selected frame, with an optional return value
(gdb) return expression (lldb) thread return expression

Backtrace and disassemble every time you stop
(lldb) target stop-hook add

Enter your stop hook commands. Enter DONE to end.
> bt
> disassemble --pc
> DONE
Stop hook #1 added.

Table 3-1 LLDB execution commands (cont.)

GDB LLDB

Table 3-2 LLDB breakpoint commands

GDB LLDB
Set a breakpoint at all functions named main
(gdb) break main (lldb) breakpoint set --name main

(lldb) br s -n main
(lldb) b main

Set a breakpoint in the test.c file at line 12
(gdb) break test.c:12 (lldb) breakpoint set --file test.c --line 12

(lldb) br s -f test.c -l 12
(lldb) b test.c:12

Set a breakpoint at all C++ methods whose base name is main
(gdb) break main

(Hope that no C functions are named main)
(lldb) breakpoint set --method main
(lldb) br s -M main

Set a breakpoint by a regular expression on the function name
(gdb) rbreak regular-expression (lldb) breakpoint set --func-regex regular-

expression

(lldb) br s -r regular-expression

Ensure that breakpoints by file and line work for #included .c/.cpp/.m files
(gdb) b foo.c:12 (lldb) settings set target.inline-breakpoint-

strategy always

(lldb) br s -f foo.c -l 12

Set a breakpoint by a regular expression on the source file contents
(gdb) shell grep -e -n pattern source-
file
(gdb) break source-file:
CopyLineNumbers

(lldb) breakpoint set --source-pattern
regular-expression --file SourceFile
(lldb) br s -p regular-expression -f file

80-N2040-31 Rev. E 28

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.4 Watchpoint commands

Set a conditional breakpoint
(gdb) break foo if strcmp(y,"hello") ==
0

(lldb) breakpoint set --name foo --condition
'(int)strcmp(y,"hello") == 0'
(lldb) br s -n foo -c '(int)strcmp(y,"hello")
== 0'

List all breakpoints
(gdb) info break (lldb) breakpoint list

(lldb) br l

Delete a breakpoint
(gdb) delete 1 (lldb) breakpoint delete 1

(lldb) br del 1

Table 3-2 LLDB breakpoint commands (cont.)

GDB LLDB

Table 3-3 LLDB watchpoint commands

GDB LLDB
Set a watchpoint on a variable when it is written to
(gdb) watch global_var (lldb) watchpoint set variable global_var

(lldb) wa s v global_var

Set a watchpoint on a memory location when it is written to
(gdb) watch -location g_char_ptr (lldb) watchpoint set expression -- my_ptr

(lldb) wa s e -- my_ptr

The size of the region to watch for defaults to the pointer size
if no -x byte_size is specified.
This command takes raw input, evaluated as an expression
returning an unsigned integer pointing to the start of the
region, after the -- option terminator.

Set a condition on a watchpoint
(lldb) watch set var global
(lldb) watchpoint modify -c '(global==5)'
(lldb) c
...
(lldb) bt
* thread #1: tid = 0x1c03, 0x0000000100000ef5
a.out`modify + 21 at main.cpp:16, stop reason
= watchpoint 1
frame #0: 0x0000000100000ef5 a.out`modify + 21
at main.cpp:16
frame #1: 0x0000000100000eac a.out`main + 108
at main.cpp:25
frame #2: 0x00007fff8ac9c7e1
libdyld.dylib`start + 1
(lldb) frame var global
(int32_t) global = 5

80-N2040-31 Rev. E 29

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.5 Examine the variables

List all watchpoints
(gdb) info break (lldb) watchpoint list

(lldb) watch l

Delete a watchpoint
(gdb) delete 1 (lldb) watchpoint delete 1

(lldb) watch del 1

Table 3-3 LLDB watchpoint commands (cont.)

GDB LLDB

Table 3-4 LLDB commands for examining variables

GDB LLDB
Show arguments and local variables for the current frame
(gdb) info args

And:
(gdb) info locals

(lldb) frame variable
(lldb) fr v

Show the local variables for the current frame
(gdb) info locals (lldb) frame variable --no-args

(lldb) fr v -a

Show the contents of the bar local variable
(gdb) p bar (lldb) frame variable bar

(lldb) fr v bar
(lldb) p bar

Show contents of the bar local variable formatted as hex
(gdb) p/x bar (lldb) frame variable --format x bar

(lldb) fr v -f x bar

Show the contents of the baz global variable
(gdb) p baz (lldb) target variable baz

(lldb) ta v baz

Show the global/static variables defined in the current source file
N/A (lldb) target variable

(lldb) ta v

Display the argc and argv variables every time you stop
(gdb) display argc
(gdb) display argv

(lldb) target stop-hook add --one-liner "frame
variable argc argv"
(lldb) ta st a -o "fr v argc argv"
(lldb) display argc
(lldb) display argv

Display the argc and argv variables only when you stop in the main function
(lldb) target stop-hook add --name main
 --one- liner "frame variable argc argv"
(lldb) ta st a -n main -o "fr v argc argv"

80-N2040-31 Rev. E 30

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.6 Evaluate the expressions

Display the *this variable only when you stop in the MyClass C class
(lldb) target stop-hook add --classname
MyClass --one-liner "frame variable *this"
(lldb) ta st a -c MyClass -o "fr v *this"

Table 3-4 LLDB commands for examining variables (cont.)

GDB LLDB

Table 3-5 LLDB commands for evaluating expressions

GDB LLDB
Evaluate a generalized expression in the current frame
(gdb) print (int) printf ("Print nine:
%d.", 4 + 5)

Or, if you do not want to see void returns:
(gdb) call (int) printf ("Print nine:
%d.", 4 + 5)

(lldb) expr (int) printf ("Print nine: %d.", 4
+ 5)

Or, using the print alias:
(lldb) print (int) printf ("Print nine: %d.",
4 + 5)

Create and assign a value to the convenience variable
(gdb) set $foo = 5
(gdb) set variable $foo = 5

Or, using the print command:
(gdb) print $foo = 5

Or, using the call command
(gdb) call $foo = 5

To specify the type of the variable:
(gdb) set $foo = (unsigned int) 5

In LLDB, evaluate a variable declaration expression as you
would write it in C:
(lldb) expr unsigned int $foo = 5

Print the dynamic type of the result of an expression
(gdb) set print object 1
(gdb) p someCPPObjectPtrOrReference

Only works for C++ objects

(lldb) expr -d 1 -- [SomeClass returnAnObject]
(lldb) expr -d 1 --
someCPPObjectPtrOrReference

Or, set dynamic type printing to be the default:
(lldb) settings set target.prefer-dynamic run-
target

Call a function so you can stop at a breakpoint in the function
(gdb) set unwindonsignal 0
(gdb) p function_with_a_breakpoint()

(lldb) expr -i 0 --
function_with_a_breakpoint()

Call a function that crashes, and stop when the function crashes
(gdb) set unwindonsignal 0
(gdb) p function_which_crashes()

(lldb) expr -u 0 -- function_which_crashes()

80-N2040-31 Rev. E 31

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.7 Examine the thread state

Table 3-6 LLDB commands for examining the thread state

GDB LLDB
Show the stack backtrace for the current thread
(gdb) bt (lldb) thread backtrace

(lldb) bt

Show the stack backtraces for all threads
(gdb) thread apply all bt (lldb) thread backtrace all

(lldb) bt all

Backtrace the first five frames of the current thread
(gdb) bt 5 (lldb) thread backtrace -c 5

(lldb) bt 5 (lldb-169 and later)
(lldb) bt -c 5 (lldb-168 and earlier)

Select a different stack frame by index for the current thread
(gdb) frame 12 (lldb) frame select 12

(lldb) fr s 12
(lldb) f 12

List information about the currently selected frame in the current thread
(lldb) frame info

Select the stack frame that called the current stack frame
(gdb) up (lldb) up

(lldb) frame select --relative=1

Select the stack frame that is called by the current stack frame
(gdb) down (lldb) down

(lldb) frame select --relative=-1
(lldb) fr s -r-1

Select a different stack frame using relative offset
(gdb) up 2
(gdb) down 3

(lldb) frame select --relative 2
(lldb) fr s -r2

(lldb) frame select --relative -3
(lldb) fr s -r-3

Show the general purpose registers for the current thread
(gdb) info registers (lldb) register read

Write a new decimal value 123 to the current rax thread register
(gdb) p $rax = 123 (lldb) register write rax 123

Skip 8 bytes ahead of the current program counter (instruction pointer)
(gdb) jump *$pc+8 (lldb) register write pc `$pc+8`

NOTE: Use backticks to evaluate an expression and insert the
scalar result in the LLDB.

80-N2040-31 Rev. E 32

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

Show the general purpose registers for the current thread, formatted as signed decimal
LLDB tries to use the same format characters as printf(3)
when possible. Enter help format to see a full list of format
specifiers:
(lldb) register read --format i
(lldb) re r -f i

LLDB now supports the GDB shorthand format syntax, but no
space can appear after the command:
(lldb) register read/d

Show all registers in all register sets for the current thread
(gdb) info all-registers (lldb) register read --all

(lldb) re r -a

Show values for the rax, rsp, and rbp registers in the current thread
(gdb) info all-registers rax rsp rbp (lldb) register read rax rsp rbp

Show values for the rax register in the current thread, formatted as binary
(gdb) p/t $rax (lldb) register read --format binary rax

(lldb) re r -f b rax

LLDB now supports the GDB shorthand format syntax but no
space can appear after the command:
(lldb) register read/t rax
(lldb) p/t $rax

Show values for the rax vector register in the current thread, formatted as data array
(lldb) pv8 rax (8-bit array)
(lldb) pv16 rax (16-bit array)
(lldb) pv32 rax (32-bit array)

Show values for tlb in the current thread
(gdb) info tlb (lldb) get tlb info

Show values for pagetable in the current thread
(gdb) info pagetable (lldb) get pagetable info

Read memory from address 0xbffff3c0 and show 4 hex uint32_t values
(gdb) x/4xw 0xbffff3c0 (lldb) memory read --size 4 --format x --count

4 0xbffff3c0
(lldb) me r -s4 -fx -c4 0xbffff3c0
(lldb) x -s4 -fx -c4 0xbffff3c0

LLDB now supports the GDB shorthand format syntax but no
space can appear after the command:
(lldb) memory read/4xw 0xbffff3c0
(lldb) x/4xw 0xbffff3c0
(lldb) memory read --gdb-format 4xw 0xbffff3c0

Table 3-6 LLDB commands for examining the thread state (cont.)

GDB LLDB

80-N2040-31 Rev. E 33

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

Read memory starting at expression argv[0]
(gdb) x argv[0] (lldb) memory read `argv[0]`

Any command can inline a scalar expression result (if the
target is stopped) by using backticks around any expression:
(lldb) memory read --size `sizeof(int)`
`argv[0]`

Read 512 bytes of memory from address 0xbffff3c0 and save the results to a local file as text
(gdb) set logging on
(gdb) set logging file /tmp/mem.txt
(gdb) x/512bx 0xbffff3c0
(gdb) set logging off

(lldb) memory read --outfile /tmp/mem.txt
--count 512 0xbffff3c0
(lldb) me r -o/tmp/mem.txt -c512 0xbffff3c0
(lldb) x/512bx -o/tmp/mem.txt 0xbffff3c0

Save binary memory data starting at 0x1000 and ending at 0x2000 to a file
(gdb) dump memory /tmp/mem.bin 0x1000
0x2000

(lldb) memory read --outfile /tmp/mem.bin
--binary 0x1000 0x2000
(lldb) me r -o /tmp/mem.bin -b 0x1000 0x2000

Disassemble the current function for the current frame
(gdb) disassemble (lldb) disassemble --frame

(lldb) di -f

Disassemble any functions named main
(gdb) disassemble main (lldb) disassemble --name main

(lldb) di -n main

Disassemble an address range
(gdb) disassemble 0x1eb8 0x1ec3 (lldb) disassemble --start-address 0x1eb8

--end-address 0x1ec3
(lldb) di -s 0x1eb8 -e 0x1ec3

Disassemble 20 instructions from a given address
(gdb) x/20i 0x1eb8 (lldb) disassemble --start-address 0x1eb8

--count 20
(lldb) di -s 0x1eb8 -c 20

Show mixed source and disassembly for the current function for the current frame
N/A (lldb) disassemble --frame --mixed

(lldb) di -f -m

Disassemble the current function for the current frame and show the opcode bytes
N/A (lldb) disassemble --frame --bytes

(lldb) di -f -b

Disassemble the current source line for the current frame
N/A (lldb) disassemble --line

(lldb) di -l

Table 3-6 LLDB commands for examining the thread state (cont.)

GDB LLDB

80-N2040-31 Rev. E 34

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.8 Executable and shared library query commands

Table 3-7 LLDB commands for querying executable and shared libraries

GDB LLDB
List the main executable and all dependent shared libraries
(gdb) info shared (lldb) image list

Look up information for the raw address in the executable or any shared libraries
(gdb) info symbol 0x1ec4 (lldb) image lookup --address 0x1ec4

(lldb) im loo -a 0x1ec4

Look up functions matching the regular expression in a binary
(gdb) info function <FUNC_REGEX> This command finds debug symbols:

(lldb) image lookup -r -n <FUNC_REGEX>

This command finds non-debug symbols:
(lldb) image lookup -r -s <FUNC_REGEX>

Provide a list of binaries as arguments to limit the search.

Find full source line information
(gdb) info line 0x1ec4 This command is a bit messy, currently. Enter:

(lldb) image lookup -v --address 0x1ec4

Look for the LineEntry line, which will have the full source
path and line range information.

Look up information for an address in a.out only
(lldb) image lookup --address 0x1ec4 a.out
(lldb) im loo -a 0x1ec4 a.out

Look up information for a type Point by name
(gdb) ptype Point (lldb) image lookup --type Point

(lldb) im loo -t Point

Dump all sections from the main executable and any shared libraries
(gdb) maintenance info sections (lldb) image dump sections

Dump all sections in module a.out
(lldb) image dump sections a.out

Dump all symbols from the main executable and any shared libraries
(lldb) image dump symtab

Dump all symbols in a.out and liba.so
(lldb) image dump symtab a.out liba.so

80-N2040-31 Rev. E 35

Qualcomm Hexagon LLDB Debugger User Guide Use the debugger

3.3.9 Miscellaneous commands

Table 3-8 Miscellaneous LLDB commands

GDB LLDB
Echo text to the screen
(gdb) echo Here is some text\n (lldb) script print "Here is some text"

Remap the source file pathnames for the debug session
(gdb) set pathname-substitutions
/buildbot/path /my/path

(lldb) settings set target.source-map
/buildbot/path /my/path

If your source files are no longer in the same location as when
the program was built (typically because the program was built
on a different computer), LLDB must know how to find the
sources at their local file path instead of the build system’s file
path.

Supply a catchall directory to search for source files in
(gdb) directory /my/path No equivalent command; use the source-map instead.

80-N2040-31 Rev. E 36

4 Frame and thread formatting

LLDB lets you customize how frame and thread information is displayed in the debugger.

4.1 Stack frame and thread format
LLDB lets you define the format used for displaying information on threads and stack frames.

Typically, when your program stops at a breakpoint, LLDB displays a line explaining why your
thread stopped:

* thread #1: tid = 0x2e03, 0x0000000100000e85 a.out`main + 4, stop
reason
 = breakpoint 1.1

Stack backtrace frames display a similar line:
(lldb)* thread backtrace *thread #1: tid = 0x2e03, stop reason =
breakpoint 1.1
 frame #0: 0x0000000100000e85 a.out`main + 4 at test.c:19
 frame #1: 0x0000000100000e40 a.out`start + 52

Use the settings set command to change the display formats used in these two lines:
(lldb) settings set frame-format STRING *
(lldb) settings set thread-format STRING

4.2 Format strings
Format strings can contain the following elements:

■ Plain text

Includes any text that does not contain a {, }, $, or \ character.

■ Control characters

■ Variables (which access the current program state)

Specified in a format string with the ${ prefix and } suffix. For example: ${frame.pc}.

80-N2040-31 Rev. E 37

Qualcomm Hexagon LLDB Debugger User Guide Frame and thread formatting

4.2.1 Variables

Table 4-1 Format string variables

Variable Name Description
file.basename Base name of the current compile unit file for the current

frame.

file.fullpath Full path of the current compile unit file for the current
frame.

frame.index Frame index (0, 1, 2, 3...).

frame.pc Generic frame register for the program counter.

frame.sp Generic frame register for the stack pointer.

frame.fp Generic frame register for the frame pointer.

frame.flags Generic frame register for the flags register.

frame.reg.NAME Access to any platform-specific register by name (replace
NAME with the name of the intended register).

function.name Name of the current function or symbol.

function.name-with-args Name of the current function with arguments and values,
or the name of the symbol.

function.pc-offset Program counter offset within the current function or
symbol.

line.file.basename Base name of the line table entry to the file for the current
line entry in the current frame.

line.file.fullpath Full path of the line table entry to the file for the current
line entry in the current frame.

line.number Line number of the line table entry for the current line
entry in the current frame.

line.start-addr Starting address of the line table entry for the current line
entry in the current frame.

line.end-addr Ending address of the line table entry for the current line
entry in the current frame.

module.file.basename Base name of the current module (shared library or
executable).

module.file.fullpath Base name of the current module (shared library or
executable).

process.file.basename Base name of the file for the process.

process.file.fullpath Full name of the file for the process.

process.id Process ID native to the system on which the inferior
runs.

process.name Name of the process at runtime.

thread.id Thread identifier for the current thread.

thread.index Unique ID of the one-based thread index that is
guaranteed to be unique as threads come and go.

80-N2040-31 Rev. E 38

Qualcomm Hexagon LLDB Debugger User Guide Frame and thread formatting

4.2.2 Control characters
Control characters include {, }, and \.

The { and } characters are used for scoping blocks, while \ is used to desensitize control
characters and emit non-printable characters.

4.2.3 Desensitizing characters
The backslash control character, \, lets you enter the typical \a, \b, \f, \n, \r, \t, \v, and \\
characters. It also allows you to specify characters in octal representation (\0123) and
hexadecimal representation (\xAB).

The \ character enables you to enter escape characters into your format strings, and it allows
colorized output for terminals that support color.

4.2.4 Scoping
In many cases, the information that you might have configured to appear in your prompt
might not be available, and you do not want the prompt to print out the information if it is
not valid. To handle this situation, you can enclose everything that must be resolved into a
scope.

A scope is defined to begin with { and end with }. For example, the following scope displays
the base name and line number for the current frame line table entry, but only when this
information is available for the current frame:

{ at {$line.file.basename}:${line.number}}

thread.name Name of the thread if the target operating system
supports naming threads.

thread.queue Queue name of the thread if the target operating system
supports dispatch queues.

thread.stop-reason Text explanation of why each thread stopped.

thread.return-value Return value of the latest step operation (currently only
for step-out).

thread.completed-expression Expression result for a thread that just finished an
interrupted expression evaluation.

target.arch Architecture of the current target.

target.script:/python_func/ Use a Python function to generate a piece of text output.

process.script:/python_func/

thread.script:/python_func/

frame.script:/python_func/

Table 4-1 Format string variables (cont.)

Variable Name Description

80-N2040-31 Rev. E 39

Qualcomm Hexagon LLDB Debugger User Guide Frame and thread formatting

The scope in this example consists of the following parts:

■ The start of the scope:
{

■ The format whose content is displayed only if all information is available:
at {$line.file.basename}:${line.number}

■ The end of the scope:
}

4.3 Format example
The following information line is an example of what can be displayed when your program is
stopped in a frame:

frame #0: 0x0000000100000e85 a.out`main + 4 at test.c:19

You can specify this information line with the following format specifier:
settings set frame-format #${frame.index}:${frame.pc}
{${module.file.basename} `{${function.name}{${function.pc-offset}}
{at ${line.file.basename}:${line.number}}\n

The format specifier in this example consists of the following parts:

■ Always print the frame index and frame PC:
#${frame.index}: ${frame.pc}

■ Only print the module followed by a tick if a valid module exists for current frame:
{${module.file.basename}`}

■ Print the function name with an optional offset:
{${function.name}{${function.pc-offset}}}

■ Print the line information, if available:
{ at ${line.file.basename}:${line.number}}

■ End the information line with a newline character:
\n

80-N2040-31 Rev. E 40

Qualcomm Hexagon LLDB Debugger User Guide Frame and thread formatting

4.4 User-defined formats
When modifying your own format strings, it is useful to start with the default values for the
frame and thread format strings. To access the default settings, use the settings show
command. For example:

(lldb) settings show thread-format
thread-format (string) = 'thread #${thread.index}:
tid = ${thread.id}{, ${frame.pc}}{
${module.file.basename}`${function.name}{${function.pc-offset}}}{,
stop reason = ${thread.stop-reason}}{, name = ${thread.name}}{, queue
= ${thread.queue}}\n'
(lldb) settings show frame-format frame-format (string) = 'frame
#${frame.index}: ${frame.pc}{ ${module.file.basename}
`${function.name} {${function.pc-offset}}}{at
${line.file.basename}:${line.number}}\n'

When defining a thread format, you must use scopes (Section 4.2.4) to contain any
information that comes from a stack frame, because the thread format does not always show
frame information.

When displaying the backtrace for a thread, you are not required to duplicate the information
for frame zero in the thread information. For example:

(lldb)* thread backtrace
thread #1: tid = 0x2e03, stop reason = breakpoint 1.1 2.1
 frame #0: 0x0000000100000e85 a.out`main + 4 at test.c:19
 frame #1: 0x0000000100000e40 a.out`start + 52 |

The frame-related variables are:
${file.*}
${frame.*}
${function.*}
${line.*}
${module.*}

In the default thread format definition, all frame-related information is in scopes, so you can
omit it when the thread information is displayed in contexts where frame information is not
applicable. For example:

|'thread #${thread.index}: tid = ${thread.id}{, ${frame.pc}}{
${module.file.basename}`${function.name}{${function.pc-offset}}}{,
stop reason = ${thread.stop-reason}}{, name = ${thread.name}}{, queue
= ${thread.queue}}\n'

In both thread and frame format definitions, use the ${X.script:/python_func/}
variables to specify Python functions that generate the display text (Section 4.2.1).

In all cases, the signature of python_func is expected to be:
def /python_func/(/object/,unused):
...
return /string/

Where object is an instance of the SB class associated with the keyword you are using.

80-N2040-31 Rev. E 41

Qualcomm Hexagon LLDB Debugger User Guide Frame and thread formatting

For example, assuming your function looks like the following:
def thread_printer_func (thread,unused):
 return "Thread %s has %d frames\n" % (thread.name,
thread.num_frames)

And you set it up with the following command:
(lldb) settings set thread-format
"${thread.script:thread_printer_func}”

You will see the following output:
 Thread main has 21 frames

80-N2040-31 Rev. E 42

5 Frame symbolication

LLDB performs symbolication on program crash logs to convert them into the file and symbol
names used in the program’s source code.

5.1 Manual symbolication with LLDB
Use LLDB to symbolicate your crash logs; it can often provide more information than other
symbolication programs:

■ Inlined functions

■ Variables that are in scope for an address, along with their locations

The simplest form of symbolication is to load an executable:
(lldb) target create --no-dependents --arch x86_64 /tmp/a.out

The --no-dependents option is used with the target create command, so you do not
load all the dependent shared libraries from the current system. When you symbolicate, you
are often symbolicating a binary that was running on another system, and even though the
main executable might reference shared libraries in /usr/lib, you often do not want to load
the versions on the current computer.

The image list command displays a list of all shared libraries associated with the current
target. As expected, there is only a single binary:

(lldb) image list
[0] 73431214-6B76-3489-9557-5075F03E36B4 0x0000000100000000
/tmp/a.out
/tmp/a.out.dSYM/Contents/Resources/DWARF/a.out

Now you can look up an address:
(lldb) image lookup --address 0x100000aa3
Address: a.out[0x0000000100000aa3] (a.out.__TEXT.__text + 131)
Summary: a.out`main + 67 at main.c:13

Because no slide (Section 5.2) or load addresses were specified for individual sections in the
binary, the address used here is a file address. A file address refers to a virtual address as
defined by each object file.

80-N2040-31 Rev. E 43

Qualcomm Hexagon LLDB Debugger User Guide Frame symbolication

If you do not use --no-dependents with the target create command, LLDB loads all the
dependent shared libraries:

(lldb) image list
[0] 73431214-6B76-3489-9557-5075F03E36B4 0x0000000100000000
/tmp/a.out/ tmp/a.out.dSYM/Contents/Resources/DWARF/a.out
[1] 8CBCF9B9-EBB7-365E-A3FF-2F3850763C6B
0x0000000000000000/usr/lib/ system/libsystem_c.dylib
[2] 62AA0B84-188A-348B-8F9E-3E2DB08DB93C
0x0000000000000000/usr/lib/ system/libsystem_dnssd.dylib
[3] C0535565-35D1-31A7-A744-63D9F10F12A4
0x0000000000000000/usr/lib/ system/libsystem_kernel.dylib
...

Performing a lookup using a file address can result in multiple matches because most shared
libraries have a virtual address space that starts at zero:

(lldb) image lookup -a 0x1000
Address: a.out[0x0000000000001000] (a.out.__PAGEZERO + 4096)
Address:
libsystem_c.dylib[0x0000000000001000](libsystem_c.dylib.__TEXT.
__text + 928)
Summary: libsystem_c.dylib`mcount + 9

Address:
libsystem_dnssd.dylib[0x0000000000001000](libsystem_dnssd.dylib.__TEX
T. __text + 456)
Summary: libsystem_dnssd.dylib`ConvertHeaderBytes + 38

Address:
libsystem_kernel.dylib[0x0000000000001000](libsystem_kernel.dylib.__T
EXT.__text + 1116)
Summary: libsystem_kernel.dylib`clock_get_time + 102
...

To avoid getting multiple file address matches, specify the name of the shared library to limit
the search:

(lldb) image lookup -a 0x1000 a.out
Address: a.out[0x0000000000001000] (a.out.__PAGEZERO + 4096)

80-N2040-31 Rev. E 44

Qualcomm Hexagon LLDB Debugger User Guide Frame symbolication

5.2 Define load addresses for sections
When symbolicating your crash logs, it can be tedious if you must always adjust your crash log
addresses into file addresses. To avoid performing any conversion, you can set the load
address for the sections of the modules in your target. Once you set any section load address,
lookups will switch to using load addresses.

You can also slide all sections in the executable by the same amount, or set the load address
for individual sections. Use the target modules load --slide command to set the load
address for all sections.

The following example slides all sections in file a.out by adding 0x123000 to each section’s
file address:

(lldb) target create --no-dependents --arch x86_64 /tmp/a.out
(lldb) target modules load --file a.out --slide 0x123000

It is often easier to specify the actual load location of each section by name.

5.3 Load multiple executables
Often you have more than one executable involved when you need to symbolicate a crash
log. When this happens, create a target for the main executable or one of the shared libraries,
and then add more modules to the target using the target modules add command.

For example, consider a crash log which contains the following images:
Binary Images:
0x100000000 - 0x100000ff7 <A866975B-CA1E-3649-98D0-
6C5FAA444ECF>/tmp/ a.out
0x7fff83f32000 - 0x7fff83ffefe7 <8CBCF9B9-EBB7-365E-A3FF-
2F3850763C6B>/ usr/lib/system/libsystem_c.dylib
0x7fff883db000 - 0x7fff883e3ff7 <62AA0B84-188A-348B-8F9E-
3E2DB08DB93C>/ usr/lib/system/libsystem_dnssd.dylib
0x7fff8c0dc000 - 0x7fff8c0f7ff7 <C0535565-35D1-31A7-A744-
63D9F10F12A4>/ usr/lib/system/libsystem_kernel.dylib

To symbolicate this log, first create the target using the main executable, and then add any
extra shared libraries:

(lldb) target create --no-dependents --arch x86_64 /tmp/a.out
(lldb) target modules add /usr/lib/system/libsystem_c.dylib
(lldb) target modules add /usr/lib/system/libsystem_dnssd.dylib
(lldb) target modules add /usr/lib/system/libsystem_kernel.dylib

If you have debug symbols in standalone files, you can specify their paths using the --
symfile option for the target create and target modules add commands:

(lldb) target create --no-dependents --arch x86_64 /tmp/a.out --
symfile /tmp/a.out.dSYM
(lldb) target modules add /usr/lib/system/libsystem_c.dylib --symfile
/build/server/a/libsystem_c.dylib.dSYM
(lldb) target modules add /usr/lib/system/libsystem_dnssd.dylib --
symfile /build/server/b/libsystem_dnssd.dylib.dSYM
(lldb) target modules add /usr/lib/system/libsystem_kernel.dylib
--symfile /build/server/c/libsystem_kernel.dylib.dSYM

80-N2040-31 Rev. E 45

Qualcomm Hexagon LLDB Debugger User Guide Frame symbolication

Next, set the load addresses for each __TEXT section (note the colors of the load addresses
above and below) using the first address from the Binary Images section for each image:

(lldb) target modules load --file a.out 0x100000000
(lldb) target modules load --file libsystem_c.dylib 0x7fff83f32000
(lldb) target modules load --file libsystem_dnssd.dylib 0x7fff883db000
(lldb) target modules load --file libsystem_kernel.dylib
0x7fff8c0dc000

Any stack backtraces that have not yet been symbolicated can now be symbolicated using the
image lookup command with the raw backtrace addresses.

Given the following raw backtrace:
Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 libsystem_kernel.dylib 0x00007fff8a1e6d46 __kill + 10
1 libsystem_c.dylib 0x00007fff84597df0 abort + 177
2 libsystem_c.dylib 0x00007fff84598e2a __assert_rtn + 146
3 a.out 0x0000000100000f46 main + 70
4 libdyld.dylib 0x00007fff8c4197e1 start + 1

The following load addresses can now be symbolicated:
(lldb) image lookup -a 0x00007fff8a1e6d46
(lldb) image lookup -a 0x00007fff84597df0
(lldb) image lookup -a 0x00007fff84598e2a
(lldb) image lookup -a 0x0000000100000f46

80-N2040-31 Rev. E 46

Qualcomm Hexagon LLDB Debugger User Guide Frame symbolication

5.4 Get variable information
If you use the --verbose option with the image lookup --address command, you can get
verbose information which often includes the locations of some of your local variables:

>(lldb) image lookup --address 0x100123aa3 --verbose
Address: a.out[0x0000000100000aa3] (a.out.__TEXT.__text + 110)
Summary: a.out`main + 50 at main.c:13
Module: file = "/tmp/a.out", arch = "x86_64"
CompileUnit: id = {0x00000000}, file = "/tmp/main.c", language = "ISO
C:1999"
Function: id = {0x0000004f}, name = "main", range =
[0x0000000100000bc0-0x0000000100000dc9)
FuncType: id = {0x0000004f}, decl = main.c:9, clang_type = "int (int,
const char **, const char **, const char **)"
Blocks: id = {0x0000004f}, range = [0x100000bc0-0x100000dc9)
 id = {0x000000ae}, range = [0x100000bf2-0x100000dc4)
LineEntry: [0x0000000100000bf2-0x0000000100000bfa): /tmp/main.c:13:23
Symbol: id = {0x00000004}, range = [0x0000000100000bc0-
0x0000000100000dc9), name="main"
Variable: id = {0x000000bf}, name = "path", type= "char [1024]",
location = DW_OP_fbreg(-1072), decl = main.c:28
Variable: id = {0x00000072}, name = "argc", type= "int", *location =
r13*, decl = main.c:8
Variable: id = {0x00000081}, name = "argv", type= "const char **",
location = r12, decl = main.c:8
Variable: id = {0x00000090}, name = "envp", type= "const char **",
location = r15, decl = main.c:8
Variable: id = {0x0000009f}, name = "aapl", type= "const char **",
location = rbx, decl = main.c:8

The interesting part of this listing is the variables: they are the parameters and local variables
that are in scope for the address that was specified.

Crash logs often include register information for the first frame in each stack. Being able to
reconstruct one or more local variables can help you decipher more information from a crash
log than you typically would be able to. In reality, this is only useful for the first frame, and
only if your crash logs have register information for your threads.

80-N2040-31 Rev. E 47

Qualcomm Hexagon LLDB Debugger User Guide Frame symbolication

5.5 Use Python API to symbolicate
You can perform all the commands demonstrated in the previous sections using the Python
script bridge. The following code recreates the target and adds the three shared libraries that
were added in the crash log example in Section 5.4:

triple = "x86_64-apple-macosx"
platform_name = None
add_dependents = False
target = lldb.debugger.CreateTarget("/tmp/a.out", triple,
platform_name, add_dependents, lldb.SBError())
if target: # Get the executable module module =
target.GetModuleAtIndex(0)
target.SetSectionLoadAddress(module.FindSection("__TEXT"),
0x100000000) module = target.AddModule
("/usr/lib/system/libsystem_c.dylib", triple, None,
"/build/server/a/libsystem_c.dylib.dSYM") target.
SetSectionLoadAddress(module.FindSection("__TEXT"), 0x7fff83f32000)
module = target.AddModule ("/usr/lib/system/libsystem_dnssd.dylib",
triple, None, "/build/server/b/libsystem_dnssd.dylib.dSYM")
target.SetSectionLoadAddress(module.FindSection("__TEXT"),
0x7fff883db000) module = target.AddModule ("/usr/lib/system/
libsystem_kernel.dylib", triple, None, "/build/server/c/
libsystem_kernel.dylib.dSYM") target.SetSectionLoadAddress
(module.FindSection("__TEXT"), 0x7fff8c0dc000)

load_addr = 0x00007fff8a1e6d46
so_addr is a section offset address, or a lldb.SBAddress object
so_addr = target.ResolveLoadAddress (load_addr)
Get a symbol context for the section offset address which
includes a module, compile unit, function, block, line entry, and
symbol
sym_ctx = so_addr.GetSymbolContext (lldb.eSymbolContextEverything
print sym_ctx

80-N2040-31 Rev. E 48

Qualcomm Hexagon LLDB Debugger User Guide Frame symbolication

5.6 Use built-in Python module to symbolicate
LLDB includes a module in the lldb package named lldb.utils.symbolication. This
module contains numerous symbolication functions that simplify symbolication by allowing
you to create objects to represent symbolication class objects such as:

lldb.utils.symbolication.Address
lldb.utils.symbolication.Section
lldb.utils.symbolication.Image
lldb.utils.symbolication.Symbolicator
lldb.utils.symbolication.Address

This class represents an address that will be symbolicated. It will cache any information that
has been looked up: module, compile unit, function, block, line entry, symbol. It does this by
having a lldb.SBSymbolContext as a member variable.

lldb.utils.symbolication.Section

This class represents a section that might get loaded in
lldb.utils.symbolication.Image. It includes helper functions which enable you to set it
from text that may have been extracted from a crash log file.

lldb.utils.symbolication.Image

This class represents a module that might get loaded into the target used for symbolication.
This class contains the executable path, the optional symbol file path, the triple, and the list
of sections that must be loaded if you choose to ask the target to load this image. Many of
these objects will never be loaded on the target unless they are required by symbolication.

You often have a crash log that has 100 to 200 different shared libraries loaded, but your
crash log stack backtraces only use a few of these shared libraries. Only the images that
contain stack backtrace addresses are to be loaded in the target for symbolication.

Subclasses of this class are to override the locate_module_and_debug_symbols method:
class CustomImage(lldb.utils.symbolication.Image):
 def locate_module_and_debug_symbols (self):
 # Locate the module and symbol given the info found in
 # the crash log

Overriding this function allows clients to find the correct executable module and symbol files
because they might reside on a build server.

lldb.utils.symbolication.Symbolicator

This class coordinates the symbolication process by loading only the
lldb.utils.symbolication.Image instances that are to be loaded to symbolicate a
supplied address.

80-N2040-31 Rev. E 49

6 Variable formatting

LLDB supports the custom formatting of variables as they are displayed in the debugger.

6.1 Variable display
LLDB has a data formatters subsystem that lets you define custom display options for
variables.

Typically, when you type a frame variable or run some expression, LLDB automatically
chooses the way to display your results on a per-type basis. For example:

(lldb) frame variable
(uint8_t) x = 'a'
(intptr_t) y = 124752287

However, in certain cases you may want to define a different style for the display of certain
data types. To do so, you must give hints to the debugger regarding how the variables are to
be displayed. The LLDB type command allows you to do just that.

Using the type command, you can change the variable display to look like this:
(lldb) frame variable
(uint8_t) x = chr='a' dec=65 hex=0x41
(intptr_t) y = 0x76f919f

Several features are related to data visualization: formats, summaries, filters, synthetic
children. To reflect this, the type command has five subcommands:
■ type format

■ type summary

■ type filter

■ type synthetic

■ type category

These subcommands are meant to bind printing options to types. When variables are printed,
LLDB first checks if custom printing options have been associated to a variable type, and if so,
it uses them instead of the default format.

Each subcommand (except the type category) has four subcommands:

■ add – Associate a new printing option to one or more types

■ delete – Delete an existing association

■ list – Provide a listing of all associations

■ clear – Delete all associations

80-N2040-31 Rev. E 50

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.2 Type formats
Type formats enable you to quickly override the default format for displaying primitive types
(the usual basic C/C++ types: int, float, char, and so on).

If you want all int variables in your program to print out as hexadecimal values, you can add
a format to the int type. Enter the following at the LLDB command line:

(lldb) type format add --format hex int

The --format option (which can be shortened to -f) accepts a format name
<#formatstable>. Then provide one or more types to apply to the new format.

A frequent scenario is that your program has a typedef for a numeric type that you know
represents something that must be printed in a certain way. Again, you can add a format just
to that typedef by using type format add with the name alias.

But things can quickly get hierarchical. Consider the following example:
typedef int A;
typedef A B;
typedef B C;
typedef C D;

Here you want to display all A types as hexadecimal, all C types as byte arrays, and leave the
default types untouched (while this example might seem contrived, it is realistic in large
software systems).

If you simply enter the following:
(lldb) type format add -f hex A
(lldb) type format add -f uint8_t[] C

The values of type B are shown as hexadecimal, and values of type D are shown as byte arrays:
(lldb) frame variable -T
(A) a = 0x00000001
(B) b = 0x00000002
(C) c = {0x03 0x00 0x00 0x00}
(D) d = {0x04 0x00 0x00 0x00}

This print formatting occurs because by default, LLDB cascades formats through typedef
chains. You can use the -C option to avoid cascading, thus creating the two commands
required to achieve your goal:

(lldb) type format add -C no -f hex A
(lldb) type format add -C no -f uint8_t[] C

Which provides the intended output:
(lldb) frame variable -T
(A) a = 0x00000001
(B) b = 2
(C) c = {0x03 0x00 0x00 0x00} (D) d = 4

80-N2040-31 Rev. E 51

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

Two additional options you should know about are --skip-pointers (-p) and
--skip-references (-r). These options prevent LLDB from applying a format for type T to
values of type T* and T& respectively:

(lldb) type format add -f float32[] int
(lldb) frame variable pointer *pointer -T
(int *) pointer = {1.46991e-39 1.4013e-45}
(int) *pointer = {1.53302e-42}
(lldb) type format add -f float32[] int -p
(lldb) frame variable pointer *pointer -T
(int *) pointer = 0x0000000100100180
(int) *pointer = {1.53302e-42}

While you can apply formats to pointers and references, they do no attempt to dereference
the pointer and extract the value before applying the format. This means you are effectively
formatting the address stored in the pointer itself, rather than the referenced value. For this
reason, when defining formats, you might want to use the -p option.

To delete a custom format, type type format delete followed by the name of the type to
which the format applies. Even if you defined the same format for multiple types on the same
command, type format delete only removes the format for the type name specified as
the argument.

To delete all formats, use type format clear. To see all the formats defined, use type
format list.

However, if all you intend is to display one variable in a custom format, while leaving the
others of the same type untouched, you can simply enter:

(lldb) frame variable counter -f hex

The value of counter is displayed as a hexadecimal number, and it displays this way until you
either pick a different format or until you let your program run again.

6.2.1 Options
default
binary | b
boolean | B
bytes | y
bytes with ASCII | Y
c-string | s
char[]
character | c
character array | a
complex float | F
complex integer | I
decimal | i
enumeration | E
float | f
float32[] | float64[]
hex | x
int8_t[] | uint8_t[]
int16_t[] | uint16_t[]
int32_t[] | uint32_t[]
int64_t[] | uint64_t[]

80-N2040-31 Rev. E 52

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

uint128_t[]
octal | o
pointer | p
printable character | C
unicode16 | U
unicode32
unsigned decimal | u

Descriptions

default

Use the default LLDB algorithm to pick a format.

binary
b

Show the value as a sequence of bits.

boolean
B

Show the value as a TRUE/FALSE Boolean, using the customary rule that 0 is FALSE
and everything else is TRUE.

bytes
y

Show the bytes one after the other. For example:
(int) s.x = 07 00 00 00

bytes with ASCII
Y

Show the bytes, but also display them as ASCII characters. For example:
(int *) c.sp.x = 50 f8 bf 5f ff 7f 00 00 P.._....

c-string
s

Show the value as a zero-terminated C string.

char[]

Show the value as an array of characters. For example:
(char) *c.sp.z = {X}

character
c

Show the bytes as ASCII characters. For example:
(int *) c.sp.x = P\xf8\xbf_\xff\x7f\0\0

character array
a

Show the value as a character array. For example:
(int *) pointer = \x80\x01\x10\0\x01\0\0\0

80-N2040-31 Rev. E 53

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

complex float
F

Interpret the value as the real and imaginary part of a complex floating-point number.
For example:

(int *) c.sp.x = 2.76658e+19 + 4.59163e-41i

complex integer
I

Interpret the value as the real and imaginary parts of a complex integer number. For
example:

(int *) pointer = 1048960 + 1i

decimal
i

Show the value as a signed integer number (this option does not perform a cast; it
simply shows the bytes as an integer with sign).

enumeration
E

Show the value as an enumeration, printing the value’s name if available or the
integer value otherwise. For example:

(enum enumType) val_type = eValue2

float
f

Show the value as a floating-point number (this option does not perform a cast; it
only interprets the bytes as an IEEE754 floating point value).

float32[]
float64[]

Show an array of the corresponding floating-point types. For example:
(int *) pointer = {1.46991e-39 1.4013e-45}

hex
x

Show the value in hexadecimal notation (this option does not perform a cast; it
simply shows the bytes as hex).

int8_t[]
uint8_t[]
int16_t[]
uint16_t[]
int32_t[]
uint32_t[]
int64_t[]
uint64_t[]
uint128_t[]

Show the values as an array of the corresponding integer types. For example:
(int) x = {1 0 0 0} (with uint8_t[]) (int) y = {0x00000001}
(with uint32_t[])

80-N2040-31 Rev. E 54

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

octal
o

Show the value in octal notation.

pointer
p

Show the value as a native pointer (unless the value is really a pointer, the resulting
address will probably be invalid).

printable character
C

Show the bytes as printable ASCII characters. For example:
(int *) c.sp.x = P.._....

unicode16
U

Show the value as UTF-16 characters. For example:
(float) x = 0xd70a 0x411f

unicode32

Show the value as UTF-32 characters. For example:
(float) x = 0x411fd70a

unsigned decimal
u

Show the value as an unsigned integer number (this option does not perform a cast;
it simply shows the bytes as an unsigned integer).

80-N2040-31 Rev. E 55

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.3 Type summaries
Type formats work by showing a different kind of display for the value of a variable. However,
they only work for basic types.

To display a class or structure type in a custom format, you must use a different feature
known as type summaries. This feature works by extracting information from classes,
structures, and other aggregate types, and arranging them in a user-defined format.

For example, before adding a type summary:
(lldb) frame variable -T one
(i_am_cool) one = {
 (int) x = 3
 (float) y = 3.14159
 (char) z = 'E' }

After adding a summary:
(lldb) frame variable one
(i_am_cool) one = int = 3, float = 3.14159, char = 69

There are two ways to use type summaries:

■ Bind a summary string to the type

■ Write a Python script that returns the string to be used as summary

Both options are enabled by the type summary add command. The following obtains the
output shown in the example:

(lldb) type summary add --summary-string "int = ${var.x}, float =
${var.y}, char = ${var.z%u}"
i_am_cool

6.3.1 Summary strings
Summary strings are written using a simple control language, exemplified by the snippet in
the previous section. A summary string contains a sequence of tokens that are processed by
LLDB to generate the summary.

Summary strings can contain plain text, control characters, and special variables that have
access to information about the current object and the overall program state.

■ Plain text is any sequence of characters that does not contain a {, }, $, or \ character,
which are the control characters (Section 4.2.2).

■ Special variables begin with a ${ prefix, and end with a } suffix. Variables can be either a
simple name, or they can refer to complex objects that themselves have sub-items. In
other words, a variable looks like ${object} or ${object.child.otherchild}.

■ A variable can also be prefixed or suffixed with other symbols meant to change the way
its value is handled. An example is ${var.int_pointer[0-3]}.

The syntax is the same as described in Chapter 4, plus additional symbols specific to summary
strings. The main addition is ${var, which is used to refer to the variable for which a
summary is being created.

80-N2040-31 Rev. E 56

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

The simplest thing you can do is get a member variable of a class or structure by typing its
expression path. In the previous example, the expression path for the field float y is simply .y.
Thus, to use the summary string to display y, type ${var.y}.

In the following code, the expression path for the y member of the x member of an object of
type B is .x.y. Type ${var.x.y} to display it in a summary string for type B:

struct A {
 int x;
 int y;
};
struct B {
 A x;
 A y;
 int z;
};

By default, a summary defined for type T, also works for types T* and T& (you can disable this
behavior). For this reason, expression paths do not differentiate between . and ->; the
expression path above, .x.y, is as good as if you were displaying a B*, or even if the actual
definition of B is:

struct B {
 A *x;
 A y;
 int *z;
};

This example is unlike the behavior of a frame variable which, on the contrary, enforces the
distinction. As hinted above, the rationale for this choice is that waiving this distinction allows
you to write a summary string once for type T, and use it for both T and T* instances. Because
a summary string is about extracting nested members’ information, a pointer to an object is
as good as the object itself for the purpose.

To access the value of the integer pointed to by B::z, you cannot simply specify ${var.z},
because that symbol refers to the pointer z. To dereference it and get the pointed value,
specify ${var.z}. The ${var directs LLDB to first get the object that the expression paths
leads to, and then dereference it. In this example, it is equivalent to (bObject.z) in C/C++
syntax.

Because the . and -> operators can both be used, dereferences are not required in the
middle of an expression path (for example, do not specify ${*(var.x).x}) to read A::x as
contained in *(B::x). To achieve that effect, simply specify ${var.x->x}, or even
${var.x.x}.

A summary string can contain more than one ${var specifier, and can use ${var and ${*var
specifiers together.

NOTE: The * operator only binds to the result of the whole expression path, rather than
piecewise, and using parentheses will not change that behavior.

80-N2040-31 Rev. E 57

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.3.2 Formatting summary elements
An expression path can include formatting codes. Much like the type formats discussed
previously, you can customize the way variables are displayed in summary strings, regardless
of the format they have applied to their types. To do that, use %/format/ inside an
expression path, such as in ${var.x->x%u}, which displays the value of x as an unsigned
integer.

You can also use other special format markers, which are not available for formats
themselves, but which carry a special meaning when used in this context.

Using the --inline-children (-c) option with type summary add directs LLDB to not
search for a summary string, but instead to just print a listing of all the object’s children on
one line. For example, given the following type pair:

(lldb) frame variable --show-types a_pair
(pair) a_pair = {
 (int) first = 1;
 (int) second = 2;
}

If you enter the following command:
(lldb) type summary add --inline-children pair

The output becomes:
(lldb) frame variable a_pair
(pair) a_pair = (first=1, second=2)

Of course, you can obtain the same effect by entering the following:
(lldb) type summary add pair --summary-string "(first=${var.first},
second=${var.second})"

While the result is the same, using --inline-children can often save time. To see the
values of the variables, not their names, combine the --omit-names, or -O (uppercase
letter), option with --inline-children to get the following:

(lldb) frame variable a_pair
(pair) a_pair = (1, 2)

Which is equivalent to:
(lldb) type summary add pair --summary-string "(${var.first},
${var.second})"

Table 6-1 Special format markers

Symbol Description
%S Object summary (the default for aggregate types)

%V Object value (the default for non-aggregate types)

%@ Language runtime-specific description (for C++, this does nothing)

 %L Object location (memory address, register name, and so on)

%# Number of children of this object

%T Name of the object data type

80-N2040-31 Rev. E 58

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.3.3 Bit fields and array syntax
Sometimes a basic type’s value represents several different values packed together in a bit
field. With the classical view, there is no way to look at them. Hexadecimal display can help,
but if the bits span nibble boundaries, the help is limited. Binary view would show it all
without ambiguity, but that view is often too detailed and hard to read for real-life scenarios.

To cope with this issue, LLDB supports native bit field formatting in summary strings. If your
expression paths leads to a so-called scalar type (the usual int, float, char, double, short, long,
long long, double, long double and unsigned variants), you can direct LLDB to grab only some
bits out of the value and display them in any format you like. If you only need one bit, you can
use the [/n/] notation, just as in indexing an array.

To extract multiple bits, you can use a slice-like syntax: [/n/-/m/]. For example:
(lldb) frame variable float_point
(float) float_point = -3.14159

(lldb) type summary add --summary-string "Sign: ${var[31]%B} Exponent:
${var[30-23]%x}
Mantissa: ${var[0-22]%u}" float

(lldb) frame variable float_point
(float) float_point = -3.14159 Sign: true Exponent: 0x00000080
Mantissa: 4788184

In this example, LLDB shows the internal representation of a float variable by extracting bit
fields out of a float object.

When typing a range, the extremes n and m are always included, and the order of the indices
is irrelevant.

LLDB also allows you to use a similar syntax to display array members inside a summary
string. For instance, you may want to display all arrays of a given type using a more compact
notation than the default, and then access just the individual array members that prove
interesting to your debugging task. You can direct LLDB to format arrays in special ways,
independent of the way the array the members’ data type is formatted. For example:

(lldb) frame variable sarray
(Simple [3]) sarray = {
 [0] = {
 x = 1
 y = 2
 z = '\x03'
 }
 [1] = {
 x = 4
 y = 5
 z = '\x06'
 }
 [2] = {
 x = 7
 y = 8
 z = '\t'
 }
}

80-N2040-31 Rev. E 59

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

(lldb) type summary add --summary-string "${var[].x}" "Simple [3]"

(lldb) frame variable sarray
(Simple [3]) sarray = [1,4,7]

The [] symbol is defined as follows: if var is an array and its size is known, apply this summary
string to every element of the array. In the example above, LLDB is directed to display .x for
every element of the array. If you find one or more of those integers anomalous, you can
inspect those items in greater detail, without the array format getting in the way:

(lldb) frame variable sarray[1]
(Simple) sarray[1] = {
 x = 4
 y = 5
 z = '\x06'
}

You can also direct LLDB to print only a subset of the array range by using the same syntax
used to extract bit for bit fields:

(lldb) type summary add --summary-string "${var[1-2].x}" "Simple [3]"

(lldb) frame variable sarray
(Simple [3]) sarray = [4,7]

If you are dealing with a pointer that you know is an array, you can use this syntax to display
the elements contained in the pointed array instead of just the pointer value. However,
because pointers have no notion of their size, the empty brackets [] operator does not work,
and you must explicitly provide higher and lower bounds.

Typically, LLDB requires the square brackets operator [] to handle arrays and pointers
correctly, and for pointers it also requires a range. However, a few special cases are defined to
make your life easier:

You can print a zero-terminated string (C-string) using the %s format, omitting square
brackets, as in:

(lldb) type summary add --summary-string "${var%s}" "char *"

This syntax works for char* as well as for char[] because LLDB can rely on the final \0
terminator to know when the string has ended.

LLDB has default summary strings for char* and char[] that use this special case. On
debugger startup, the following are defined automatically:

(lldb) type summary add --summary-string "${var%s}" "char *"
(lldb) type summary add --summary-string "${var%s}" -x "char \[[0-
9]+]"

Any of the array formats (int8_t[], float32{}, ...), and the y, Y and a formats work to
print an array of a non-aggregate type, even if square brackets are omitted.

(lldb) type summary add --summary-string "${var%int32_t[]}" "int
[10]"

This feature, however, is not enabled for pointers because there is no way for LLDB to detect
the end of the pointed data. This also does not work for other formats (such as Boolean), and
you must specify the square brackets operator to get the expected output.

80-N2040-31 Rev. E 60

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.4 Python scripts
Summary strings are typically good enough for summarizing the contents of a variable.
However, to do more than simply picking some values and rearranging them for display,
summary strings are not effective because they lack the power to perform any kind of
computation on the value of variables.

To solve this issue, you can bind some Python scripting code as a summary for your data type,
and that script can both extract children variables as the summary strings do, and to perform
active computation on the extracted values. For example:

class Rectangle
{
private:
 int height;
 int width;
public:
 Rectangle() : height(3), width(5) {}
 Rectangle(int H) : height(H), width(H*2-1) {}
 Rectangle(int H, int W) : height(H), width(W) {}
 int GetHeight() { return height; }
 int GetWidth() { return width; }
};

Summary strings are effective to reduce the screen real estate used by the default viewing
mode, but they are not effective for displaying the area and perimeter of Rectangle objects.
In this case, attach a small Python script to the Rectangle class:

(lldb) type summary add -P Rectangle
Enter your Python command(s). Type 'DONE' to end.
def function (valobj,internal_dict):
 height_val = valobj.GetChildMemberWithName('height')
 width_val = valobj.GetChildMemberWithName('width')
 height = height_val.GetValueAsUnsigned(0)
 width = width_val.GetValueAsUnsigned(0)
 area = height*width
 perimeter = 2*(height + width)
 return 'Area: ' + str(area) + ', Perimeter: ' + str(perimeter)
DONE
(lldb) frame variable
(Rectangle) r1 = Area: 20, Perimeter: 18
(Rectangle) r2 = Area: 72, Perimeter: 36
(Rectangle) r3 = Area: 16, Perimeter: 16

To write effective summary scripts, you must know the LLDB public API, which is the way
Python code can access the LLDB object model.

NOTE: For further details on the API see the rest of this chapter or the LLDB API reference
documentation (http://lldb.llvm.org/python_reference/index.html).

http://lldb.llvm.org/python_reference/index.html

80-N2040-31 Rev. E 61

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

As a brief introduction, your script is encapsulated as a function that is passed two
parameters, valobj and internal_dict:

■ valobj is the object encapsulating the actual variable being displayed, and its type is
SBValue.

■ internal_dict is an internal support parameter used by LLDB; do not touch it.

Of the many possible operations on an SBValue, the most basic operation is to retrieve the
children objects that it contains (which are the fields of the object that is wrapped by it), by
calling GetChildMemberWithName() and passing it the child’s name as a string.

If the variable has a value, you can ask for it and return it as a string using GetValue() or as a
signed/unsigned number using GetValueAsSigned(), GetValueAsUnsigned().

You can also retrieve an SBData object by calling GetData() and then reading the object’s
contents out of the SBData.

To traverse several levels of hierarchy, as you can do with summary strings, use the method
GetValueForExpressionPath(). Pass this function an expression path similar to those
used in summary strings. One of the differences is that dereferencing a pointer does not
occur by prefixing the path with a *, but by calling the Dereference() method on the returned
SBValue.

To access array slices, you cannot do that (yet) via this method call, and instead must use
GetChildAtIndex(). Query this function for the array items one by one. Also, handling
custom formats is something you must deal with on your own.

Other than interactively typing a Python script, there are two other ways for you to input a
Python script as a summary:

■ Using the --python-script option with type summary add, and entering the script
code as an option argument:
(lldb) type summary add --python-script "height = valobj.
GetChildMemberWithName('height').GetValueAsUnsigned(0);
width = valobj.GetChildMemberWithName('width').GetValueAsUnsigned(0);
return 'Area: %d' % (height*width)" Rectangle

■ Using the --python-function (-F) option with type summary add, and specifying the
name of a Python function with the correct prototype.

You will probably define (or have already defined) the function in the interactive interpreter,
or you will somehow load it from a file using the command script import command. LLDB will
generate a warning if it cannot find the function you passed, but it will still register the
binding.

80-N2040-31 Rev. E 62

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.5 Regular expression type names
To associate the custom summary string to the array types, you must specify the array size as
part of the type name. This can become tiresome when using arrays of different sizes, such as
Simple [3], Simple [9], Simple [12], and so on.

If you use the -x option, type names are treated as regular expressions instead of type
names. This options lets you rephrase the above example for arrays of type Simple [3] as:

(lldb) type summary add --summary-string "${var[].x}" -x "Simple \[[0-
9]+\]"

(lldb) frame variable
(Simple [3]) sarray = [1,4,7]
(Simple [2]) sother = [3,6]

The above scenario works for Simple [3] as well as for any other array of Simple objects.

While this feature is mostly useful for arrays, you can also use regular expressions to catch
other type sets grouped by name. However, because regular expression matching is slower
than normal name matching, LLDB will first try to match by name in any way it can; only when
this fails will LLDB resort to regular expression matching.

One of the ways LLDB uses this feature internally, is to match the names of STL container
classes, regardless of the template arguments provided. The details for this are in file
FormatManager.cpp.

The regular expression language used by LLDB is the POSIX extended language, as defined by
the Single UNIX Specification
(http://pubs.opengroup.org/onlinepubs/7908799/xsh/regex.h.html).

http://pubs.opengroup.org/onlinepubs/7908799/xsh/regex.h.html

80-N2040-31 Rev. E 63

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.6 Named summaries
For a given type, there may be different meaningful summary representations. Currently,
however, only one summary can be associated to a type at each moment. To temporarily
override the association for a variable without changing the summary string for to its type,
use named summaries.

Named summaries work by attaching a name to a summary when creating it. Then, when the
summary is to be attached to a variable, the frame variable command supports a
--summary option that directs LLDB to use the named summary given instead of the default
summary. For example:

(lldb) type summary add --summary-string "x=${var.integer}" --name
NamedSummary

(lldb) frame variable one
(i_am_cool) one = int = 3, float = 3.14159, char = 69
(lldb) frame variable one --summary NamedSummary
(i_am_cool) one = x=3

When defining a named summary, binding it to one or more types becomes optional. Even if
you bind the named summary to a type and later change the summary string for that type,
the named summary will not be changed. You can delete named summaries by using the type
summary delete command, as if the summary name was the data type that the summary is
applied to

A summary attached to a variable using the --summary option, has the same semantics that
a custom format attached using the -f option has: it stays attached until you attach a new
one, or until you let your program run again.

80-N2040-31 Rev. E 64

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.7 Synthetic children
Summaries work well when you can navigate through an expression path. For LLDB to do this,
the appropriate debugging information must be available.

Some types are opaque, i.e. no knowledge of their internals is provided. When that is the
case, expression paths do not work correctly.

In other cases, the internals are available to use in expression paths, but they do not provide
a user-friendly representation of the object’s value.

For instance, consider an STL vector, as implemented by the GNU C++ Library
(http://gcc.gnu.org/onlinedocs/libstdc++/):

(lldb) frame variable numbers -T
(std::vector<int>) numbers = {
 (std::_Vector_base<int, std::allocator<int> >)
std::_Vector_base<int, std::allocator<int> > = {
(std::_Vector_base<int, std::allocator&tl;int> >::_Vector_impl)
_M_impl = {
 (int *) _M_start = 0x00000001001008a0
 (int *) _M_finish = 0x00000001001008a8
 (int *) _M_end_of_storage = 0x00000001001008a8
 }
 }
}

Here you can see how the type is implemented, and you can write a summary for that
implementation. But, it will not help you infer which items are actually stored in the vector.

What you would like to see is probably something like:
(lldb) frame variable numbers -T
(std::vector<int>) numbers = {
 (int) [0] = 1
 (int) [1] = 12
 (int) [2] = 123
 (int) [3] = 1234
}

Synthetic children are a way to get that result.

The feature is based on the idea of providing a new set of children for a variable that replaces
the ones available by default through the debug information. The example uses synthetic
children to provide the vector items as children for the std::vector object.

To create synthetic children, you must provide a Python class that adheres to a given
interface1.

1 The term is italicized because Python has no explicit notion of interface in the sense of a given set of
methods that must be implemented by a Python class (http://en.wikipedia.org/wiki/Duck_typing).

http://en.wikipedia.org/wiki/Duck_typing
http://gcc.gnu.org/onlinedocs/libstdc++/
http://gcc.gnu.org/onlinedocs/libstdc++/

80-N2040-31 Rev. E 65

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

For example, consider the following footnoted example:
class SyntheticChildrenProvider:
 def __init__(self, valobj, internal_dict):
 /this call should initialize the Python object using valobj as
the
 variable to provide synthetic children for/
 def num_children(self):
 /this call should return the number of children that you want
your
 object to have/
 def get_child_index(self,name):
 /this call should return the index of the synthetic child whose
name
 is given as argument/
 def get_child_at_index(self,index):
 /this call should return a new LLDB SBValue object representing
the
 child at the index given as argument/
 def update(self):
 /this call should be used to update the internal state of this
 Python object whenever the state of the variables in LLDB
 changes./ 1

 def has_children(self):
 /this call should return True if this object might have children,
 and False if this object can be guaranteed not to have
 children./ 2

For examples of how synthetic children are created, look at examples/synthetic in the
LLDB trunk (http://llvm.org/svn/llvm-project/lldb/trunk/examples/synthetic/). Be aware that
the code in those files (except bitfield/) is legacy code and is not maintained. Look at this
example to get a feel for this feature because it is an easy and well-commented example.

The design pattern consistently used in synthetic providers shipped with LLDB is to use the
__init__ to store the SBValue instance as a part of self. The update function is then used
to perform the actual initialization.

After writing a synthetic children provider, you must load it into LLDB before it can be used:

■ Use the LLDB script command to type Python code interactively.

■ Or, use the command script import command to load Python code from a Python module
(ordinary rules apply to importing modules this way).

■ Or, type the code for the provider class interactively while adding it.

1 This method is optional. Also, it can optionally choose to return a value (starting with SVN
rev153061/LLDB-134). If it returns a value and that value is TRUE, LLDB can cache the children and
the children count that it previously obtained, and it will not return to the provider class to ask. If
nothing (None) or anything other than TRUE is returned, LLDB discards the cached information and
asks. Regardless, when necessary, LLDB will call update.

2 This method is optional (starting with SVN rev166495/LLDB-175). While implementing it in terms of
num_children is acceptable, you are encouraged to look for optimized coding alternatives when
appropriate.

http://llvm.org/svn/llvm-project/lldb/trunk/examples/synthetic/

80-N2040-31 Rev. E 66

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

For example, consider a Foo class that makes available a synthetic children Foo_Provider
class in a Python module contained in the ~/Foo_Tools.py file. The following interaction
sets Foo_Provider as a synthetic children provider in LLDB:

(lldb) command script import ~/Foo_Tools.py
(lldb) type synthetic add Foo --python-class Foo_Tools.Foo_Provider

(lldb) frame variable a_foo
(Foo) a_foo = {
x = 1
y = "Hello world"
}

LLDB has synthetic children providers for a core subset of STL classes, both in the version
provided by libstdcpp (http://gcc.gnu.org/libstdc++/) and libcxx (http://libcxx.llvm.org/),
as well as for several Foundation classes.

Synthetic children extend summary strings by enabling a new special variable: ${svar. This
symbol tells LLDB to refer expression paths to the synthetic children instead of the real
children. For example:

(lldb) type summary add --expand -x "std::vector<" --summary-string
"${svar%#} items"

(lldb) frame variable numbers
(std::vector<int>) numbers = 4 items {
 (int) [0] = 1
 (int) [1] = 12
 (int) [2] = 123
 (int) [3] = 1234
}

In some cases, if LLDB cannot use the real object to get a child specified in an expression path,
it will automatically refer to the synthetic children. While in summaries it is best to always use
${svar to make your intentions clearer, interactive debugging can benefit from this behavior.
For example:

(lldb) frame variable numbers[0] numbers[1]
(int) numbers[0] = 1
(int) numbers[1] = 12

Unlike many other visualization features, however, the access to synthetic children only works
when using the frame variable, and it is not supported in the expression command:

(lldb) expression numbers[0]
Error [IRForTarget]: Call to a function '_ZNSt33vector<int,
std::allocator<int> >ixEm' that is not present in the target
error: Couldn't convert the expression to DWARF

The reason for this limitation () is that classes might have an overloaded operator [], or other
special provisions, and the expression command chooses to ignore synthetic children in the
interest of equivalence with code you asked to be compiled from source.

As shown in this example, the expression command cannot parse and display some
variables because the classes might have an overloaded operator [] or other special
provision. Thus, the expression command ignores synthetic children in the interest of
equivalence with the code you asked to be compiled from source.

http://gcc.gnu.org/libstdc++/
http://libcxx.llvm.org/

80-N2040-31 Rev. E 67

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.8 Filters
Filters are a solution to the display of complex classes. At times classes have many member
variables, but not all of them are necessary for you to see.

A filter solves this issue by letting you see only those member variables you care about. Of
course, you can easily implement the equivalent of a filter using synthetic children, but a
filter lets you do the job without writing Python code.

For example, if your class Foobar has member variables named A through Z, but you only
need to see the variables named B, H, and Q, you can define the following filter:

(lldb) type filter add Foobar --child B --child H --child Q

(lldb) frame variable a_foobar
(Foobar) a_foobar = {
 (int) B = 1
 (char) H = 'H'
 (std::string) Q = "Hello world"
}

6.9 Categories
Categories are a way to group related formatters. For instance, LLDB groups the formatters
for the libstdc++ types in a category named gnu-libstdc++. Basically, categories serve as
containers in which to store formatters for the same library or OS release.

By default, several categories are created in LLDB:

■ Default

The category where every formatter ends up, unless another category is specified.
■ gnu-libstdc++

Formatters for std::string, std::vector, std::list, and std::map as
implemented by libstdcpp .

■ libcxx

Formatters for std::string, std::vector, std::list, and std::map as
implemented by libcxx.

■ system

Truly basic types for which a formatter is required.
■ VectorTypes

Compact display for several vector types.

The type command has several options that also include an add option:
type filter add
type format add
type summary add
type synthetic add

80-N2040-31 Rev. E 68

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

To specify a custom category in which to add the formatter, use a type <option> add
command with the --category (-w) option. For example, the following command
automatically creates a (disabled) category named newcategory:

(lldb) type summary add Foobar --summary-string "a foobar" --category
newcategory

To delete the formatter, you must specify the correct category.

Categories can be in one of two states: enabled or disabled. A category is initially disabled and
can be enabled using the type category enable command. To disable an enabled
category, use the type category disable command.

The order in which categories are enabled or disabled is significant, because LLDB uses that
order when looking for formatters. Therefore, when you enable a category, it becomes the
second one to be searched (after default, which always stays on top of the list). The default
categories are enabled in such a way to use the following search order:
1. default

2. objc

3. gnu-libstdc++

4. libcxx

5. VectorTypes

6. system

As noted, gnu-libstdc++ and libcxx contain formatters for C++ STL data types. The
system category contains formatters for char* and char[], which reflect the behavior of
older versions of LLDB that had built-in formatters for these types. Because these are now
formatters, you can even replace them with your own versions.

No special command exists to create a category. When you place a formatter in a category, if
that category does not exist, it is automatically created. For example:

(lldb) type summary add Foobar --summary-string "a foobar" --category
newcategory

This command automatically creates a (disabled) category named newcategory.

Another way to create a new (empty) category is to enable it, as in:
(lldb) type category enable newcategory

However, in this case LLDB warns you that enabling an empty category has no effect. If you
add formatters to the category after enabling it, they will be honored. But an empty category
itself does not change the way any type is displayed. The reason the debugger warns you is
because enabling an empty category might be a typo, and you effectively wanted to enable a
similarly named but not empty category.

80-N2040-31 Rev. E 69

Qualcomm Hexagon LLDB Debugger User Guide Variable formatting

6.10 Finding formatters 101
Given a variable, the process of searching for a formatter (including formats, starting in SVN
rev r1922171) involves a rather intricate set of rules. LLDB starts looking in each enabled
category, according to the order in which they were enabled (latest enabled first). In each
category, LLDB does the following:

1. If there is a formatter for the type of the variable, use it.

2. If this object is a pointer, and there is a formatter for the pointee type that does not skip
pointers, use it.

3. If this object is a reference, and there is a formatter for the referred type that does not
skip references, use it.

4. If this object type is a typedef, go through the typedef hierarchy. (LLDB might not be able
to do this if the compiler has not emitted enough information.) If the required
information to traverse typedef hierarchies is missing, type cascading will not work. (The
LLVM Clang compiler emits the correct debugging information for LLDB to cascade.) If at
any level of the hierarchy there is a valid formatter that can cascade, use it.

5. If everything has failed, repeat the above search, looking for regular expressions instead
of exact matches.

6. If any of those attempts returned a valid formatter to be used, that one is used, and the
search is terminated (without going to look in other categories). If nothing was found in
the current category, the next enabled category is scanned according to the same
algorithm. If there are no more enabled categories, the search has failed.

NOTE: Previous versions of LLDB defined cascading to mean not only going through typedef
chains, but also through inheritance chains. This feature has been removed because it
significantly degrades performance. You must set up your formatters for every type in
inheritance chains to which you want the formatter to apply.

1 http://llvm.org/viewvc/llvm-project?view=revision&revision=192217

http://llvm.org/viewvc/llvm-project?view=revision&revision=192217

80-N2040-31 Rev. E 70

7 Python scripting

LLDB supports controlling the debugger from a Python script.

7.1 LLDB API
The entire LLDB API is available as Python functions through a script bridging interface. This
means you can use the LLDB API directly from Python, either interactively or to build Python
apps that provide debugger features.

Additionally, you can use Python as a programmatic interface in the LLDB command
interpreter (for brevity, this interpreter is referred to as the embedded interpreter). In this
context it has full access to the LLDB API.

The LLDB API is contained in a Python module named lldb. When writing Python extensions,
a useful resource is the LLDB Python Classes Reference Guide
(http://lldb.llvm.org/python_reference/index.html).

The documentation is also accessible in an interactive debugger session with the following
command:

(lldb) script help(lldb)

You can also get help using a module class name. The full API that is exposed for that class is
displayed in a man page style window. To get help on the lldb.SBFrame class:

(lldb) script help(lldb.SBFrame)

Or you can get help using any Python object. In the following example, the lldb.process
object is used, which is a global variable in the lldb module that represents the currently
selected process:

(lldb) script help(lldb.process)

http://lldb.llvm.org/python_reference/index.html

80-N2040-31 Rev. E 71

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

7.2 Embedded Python interpreter
You can access the embedded Python interpreter in a variety of ways from within LLDB. The
easiest way is to use the LLDB script command with no arguments at the LLDB command
prompt:

(lldb) script
Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or
Ctrl-D.
>>> 2+3
5
>>> hex(12345)
'0x3039'
>>>

This script drops you into the embedded Python interpreter. When running under the script
command, LLDB sets some convenience variables which give you quick access to the currently
selected entities that characterize the program and debugger state. In each case, if there is no
currently selected entity of the appropriate type, the variable’s IsValid method will return
FALSE.

Table 7-1 Python convenience variables

Variable Type Description
lldb.debugger lldb.SBDebugger Contains the debugger object whose script command

was invoked.
The lldb.SBDebugger object owns the command
interpreter and all the targets in your debug session.
There is always a debugger in the embedded
interpreter.

lldb.target lldb.SBTarget Contains the currently selected target - for instance
the one made with the file or selected by the target
select <target-index> command.
The lldb.SBTarget manages one running process, and
all the executable and debug files for the process.

lldb.process lldb.SBProcess Contains the process of the currently selected target.
The lldb.SBProcess object manages the threads and
allows access to memory for the process.

80-N2040-31 Rev. E 72

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

While extremely convenient, these variables have few restrictions on their use.

First, they only hold the values of the selected objects on entry to the embedded interpreter.
Their values are not updated when you use the LLDB APIs to change, for example, the
currently selected stack frame or thread.

Second, they are only defined and meaningful while in the interactive Python interpreter.
There is no guarantee on their value in any other situation, so do not use them when defining
Python formatters, breakpoint scripts, or commands (or any other Python extension point
that LLDB provides).

NOTE: As a rationale for such behavior, consider that LLDB can run in a multi-threaded
environment, and another thread might call the script command, changing the value
out from under you.

To assist you in getting started with objects and LLDB scripting, be aware that most of the
LLDB Python objects can briefly describe themselves when they are passed to the Python
print function:

(lldb) script
Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or
Ctrl-D.
>>> print lldb.debugger
Debugger (instance: "debugger_1", id: 1)
>>> print lldb.target a.out
>>> print lldb.process
SBProcess: pid = 59289, state = stopped, threads = 1, executable =
a.out
>>> print lldb.thread
SBThread: tid = 0x1f03
>>> print lldb.frame
frame #0: 0x0000000100000bb6 a.out main + 54 at main.c:16

lldb.thread lldb.SBThread Contains the currently selected thread.
The lldb.SBThread object manages the stack frames
in that thread.
A thread is always selected in the command
interpreter when a target stops. Use the thread select
<thread-index> command to change the currently
selected thread. As long as you have a stopped
process, there is a selected thread.

lldb.frame lldb.SBFrame Contains the currently selected stack frame.
The lldb.SBFrame object manages the stack locals
and the register set for that stack.
A stack frame is always selected in the command
interpreter when a target stops. Use the frame select
<frame-index> command to change the currently
selected frame. As long as you have a stopped
process, there is a selected frame.

Table 7-1 Python convenience variables (cont.)

Variable Type Description

80-N2040-31 Rev. E 73

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

7.3 Run a script when a breakpoint is hit
One powerful use of the LLDB Python API is to have a Python script run when a breakpoint is
hit. Adding Python scripts to breakpoints provides a way to create complex breakpoint
conditions, and they allow for smart logging and data gathering.

When your process hits a breakpoint to which you have attached some Python code, the code
is executed as the body of a function that takes three arguments:

def breakpoint_function_wrapper(frame, bp_loc, dict):
 # Your code goes here

Optionally, a Python breakpoint command can return a value. Returning False informs LLDB
that you do not want to stop at the breakpoint. Any other return value (including None or
leaving out the return statement altogether) is equivalent to directing LLDB to stop at the
breakpoint. This command is useful in situations where a breakpoint is required to only stop
the process when certain conditions are met, and you do not want to inspect the program
state manually at every stop and then continue.

Writing some Python code and attaching it to a breakpoint is a fairly simple task. The
following example shows how to track the order in which the functions in a given shared
library are first executed during one run of your program.

(lldb) breakpoint set --func-regex=. --shlib=libfoo.dylib
Breakpoint created: 1: regex = '.', module = libfoo.dylib, locations =
223
(lldb) script counter = 0
(lldb) breakpoint command add --script-type python 1
Enter your Python command(s) and type 'DONE' to end.
> # Increment counter. Since this is in a function, it must be a
global Python variable
> global counter
> counter += 1
> # Get the name of the function

Table 7-2 Python breakpoint function arguments

Argument Type Description
frame lldb.SBFrame The current stack frame where the

breakpoint got hit.
The object is always valid.
This frame argument might match the
currently selected stack frame found in the
LLDB module global variable,
lldb.frame.

bp_loc lldb.SBBreakpointLocation The breakpoint location that was just hit.
Breakpoints are represented by
lldb.SBBreakpoint objects, which can
have one or more locations. These
locations are represented by
lldb.SBBreakpointLocation objects.

dict dict The Python session dictionary as a
standard Python dictionary object.

80-N2040-31 Rev. E 74

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

> name = frame.GetFunctionName() >
Print the order and the function name
> print '[%i] %s' % (counter, name)
> # Disable current breakpoint location so it doesn't get hit again >
bp_loc.SetEnabled(False)
> # No need to stop here
> return False
> DONE

This simple method gathers an order file that you can use to optimize function placement
within a binary for execution locality. This is done by setting a regular expression breakpoint
that will match every function in the shared library. The regular expression, ., will match any
string that has at least one character in it, so it is used. This will result in one
lldb.SBBreakpoint object that contains an lldb.SBBreakpointLocation object for each
function.

When the breakpoint is hit, a counter is used to track the order in which the function at this
breakpoint location was hit. Because the code is past the location that was hit, you can get
the name of the function from the location, disable the location so you do not count this
function again, and then log some information and continue the process.

NOTE: The counter must be initialized, which is done with the simple one-line version of the
script command.

The breakpoint command add command in this example attaches a Python script to
breakpoint 1. To remove the breakpoint command:

(lldb) breakpoint command delete 1

80-N2040-31 Rev. E 75

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

7.4 Create new command using a Python function
You can use Python functions to create new LLDB command interpreter commands that work
like all the natively defined LLDB commands. This provides a very flexible and easy way to
extend LLDB to meet your debugging requirements.

To write a Python function that implements a new LLDB command, define the function to
take four arguments as follows:

def command_function(debugger, command, result, internal_dict):
Your code goes here

Optionally, you can also provide a Python docstring, and LLDB will use it when providing
help for your command. For example:

def command_function(debugger, command, result, internal_dict):
"""This command takes a lot of options and does many fancy things"""
 # Your code goes here

For convenience, you can treat the result object as a Python file object:
print >>result, "my command does lots of cool stuff"

SBCommandReturnObject and SBStream both support this file-like behavior by providing
write() and flush() calls at the Python layer.

Table 7-3 Python command function arguments

Argument Type Description
debugger lldb.SBDebugger The current debugger object.

command Python string A Python string containing all
arguments for your command.
To chop up the arguments, try using
the shlex module’s
shlex.split(command) to properly
extract the arguments.

result lldb.SBCommandReturnObject A return object that encapsulates
success or failure information for the
command and output text that is to be
printed as a result of the command.
The plain Python print command
also works, but text will not go into the
result by default (this command is
useful as a temporary logging facility).

internal_dict Python dict object The dictionary for the current
embedded script session that contains
all variables and functions.

80-N2040-31 Rev. E 76

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

Another convenience when defining LLDB command-line commands is the command,
command script import. It imports a module specified by the file path so you are not
required to change your PYTHONPATH for temporary scripts. This command also offers
another convenience whereby if your new script module has a function of the form:

def __lldb_init_module(debugger, internal_dict):
Command Initialization code goes here

Where debugger and internal_dict are defined as shown above. In this case, the
function is run when the module is loaded, allowing you to add any commands into the
current debugger.

NOTE: This function only runs when you use the LLDB command, command script import. It
does not run if anyone imports your module from another module.

To always run code when your module is loaded from LLDB, or when it is loaded with an
import statement in Python code, you can test the lldb.debugger object because you
imported the module at the top of the Python ls.py module. This test must be in code that is
not contained inside any function or class, just like the standard test for __main__ that all
Python modules typically do. The sample code would look as follows:

if __name__ == '__main__':
 # Create a new debugger instance in your module if your module
 # can be run from the command line. When running a script from
 # the command line, there will not be any debugger object in
 # lldb.debugger, so you can just create it if needed
 lldb.debugger = lldb.SBDebugger.Create()
elif lldb.debugger:
 # Module is being run inside the LLDB interpreter
 lldb.debugger.HandleCommand('command script add -f ls.ls ls')
 print 'The "ls" python command has been installed and is ready for
use.'

Next, create a module named ls.py in the ~/ls.py file, which implements a function that
the LLDB Python command code can use:

#!/usr/bin/python

import lldb
import commands
import optparse
import shlex

def ls(debugger, command, result, internal_dict):
 print >>result, (commands.getoutput('/bin/ls %s' % command))

And the initialization code to add your commands
def __lldb_init_module(debugger, internal_dict):
 debugger.HandleCommand('command script add -f ls.ls ls')
 print 'The "ls" python command has been installed and is ready for
use.'

80-N2040-31 Rev. E 77

Qualcomm Hexagon LLDB Debugger User Guide Python scripting

Finally, load the module into LLDB and use it:
% lldb
(lldb) command script import ~/ls.py
The "ls" python command has been installed and is ready for use.
(lldb) ls -l /tmp/
total 365848
-rw-r--r--@ 1 someuser wheel 6148 Jan 19 17:27 .DS_Store
-rw------- 1 someuser wheel 7331 Jan 19 15:37 crash.log

NOTE: A more interesting template, cmdtemplate.py, is available in the source repository
(http://llvm.org/svn/llvm-project/lldb/trunk/examples/python/cmdtemplate.py). It can
help you create LLDB commands quickly.

A commonly required facility is the ability to create a command that performs some token
substitution and then runs a different debugger command (typically, it performs a po on the
result of an expression evaluated on its argument). For example, given the following program:

#import <Foundation/Foundation.h>
NSString*
ModifyString(NSString* src)
{
 return [src stringByAppendingString:@"foobar"];
}

int main()
{
 NSString* aString = @"Hello world";
 NSString* anotherString = @"Let's be friends";
 return 1;
}

You might want a pofoo X command that equates po [ModifyString(X)
capitalizedString]. The following debugger interaction shows how to achieve that goal:

(lldb) script
Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or
Ctrl-D.
>>> def pofoo_funct(debugger, command, result, internal_dict):
... cmd = "po [ModifyString(" + command + ") capitalizedString]"
... lldb.debugger.HandleCommand(cmd)
...
>>> ^D
(lldb) command script add pofoo -f pofoo_funct
(lldb) pofoo aString
$1 = 0x000000010010aa00 Hello Worldfoobar
(lldb) pofoo anotherString
$2 = 0x000000010010aba0 Let's Be Friendsfoobar

CAUTION: We strongly suggest that you do not use HandleCommand for anything but command
script import and commands like settings set, which are not supported by the
LLDB API. The LLDB API is the preferred method for interacting with LLDB through
Python.

http://llvm.org/svn/llvm-project/lldb/trunk/examples/python/cmdtemplate.py

80-N2040-31 Rev. E 78

8 Script example

You can script LLDB in two ways:

■ A Unix Python session can initiate and run a debug session non-interactively using LLDB.

■ Within the LLDB debugger tool, you can use Python scripts to perform many tasks,
including inspecting program data, iterating over containers, and determining if a
breakpoint should stop execution or continue.

The following sections show how to use Python scripting to find a bug in a program that
searches for text in a large binary tree.

8.1 The test program and input
The test program is a simple C program (dictionary.c) that reads a text file and stores all
the words from the file in a binary search tree, sorted alphabetically. It then enters a loop
prompting yo for a word, searching for the word in the tree (using a binary search), and
reporting whether it found the word in the tree.

The input text file used to test the program contains the text for William Shakespeare’s
famous tragedy, Romeo and Juliet.

8.2 The bug
When you try running the program, you will find there is a problem. While it successfully
finds some of the words it is expected to find, such as love or sun, it fails to find the word
Romeo, which must be in the input text file:

% ./dictionary Romeo-and-Juliet.txt
Dictionary loaded.
Enter search word: love
Yes!
Enter search word: sun
Yes!
Enter search word: Romeo
No!
Enter search word: ^D
%

80-N2040-31 Rev. E 79

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.3 Check for the word in the tree: use DFS
The first task is to determine whether the word, Romeo, was inserted into the tree. Because
Romeo and Juliet has thousands of words, trying to examine the binary search tree by hand is
completely impractical. Therefore, a Python script is written to search the tree.

The script is written as a recursive depth-first search (DFS) function that traverses the entire
tree, searching for a word while maintaining information about the path from the root of the
tree to the current node. If the function finds the word in the tree, it returns the path from
the root to the node containing the word.

Following is the DFS function in Python, with line numbers added for easy reference in the
subsequent explanations of the code:

 1: def DFS (root, word, cur_path):
 2: root_word_ptr = root.GetChildMemberWithName ("word")
 3: left_child_ptr = root.GetChildMemberWithName ("left")
 4: right_child_ptr = root.GetChildMemberWithName ("right")
 5: root_word = root_word_ptr.GetSummary()
 6: end = len (root_word) - 1
 7: if root_word[0] == '"' and root_word[end] == '"':
 8: root_word = root_word[1:end]
 9: end = len (root_word) - 1
10: if root_word[0] == '\'' and root_word[end] == '\'':
11: root_word = root_word[1:end]
12: if root_word == word:
13: return cur_path
14: elif word < root_word:
15: if left_child_ptr.GetValue() == None:
16: return ""
17: else:
18: cur_path = cur_path + "L"
19: return DFS (left_child_ptr, word, cur_path)
20: else:
21: if right_child_ptr.GetValue() == None:
22: return ""
23: else:
24: cur_path = cur_path + "R"
25: return DFS (right_child_ptr, word, cur_path)

80-N2040-31 Rev. E 80

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.4 Work with program variables in Python
Before calling a Python function on any of the program’s variables, put the variable into a
form that Python can access. To do this, examine the parameters for the DFS function:

■ The first parameter is a node in a binary search tree, put into a Python variable.

■ The second parameter is the word being searched for (a string). The third parameter is a
string representing the path from the root of the tree to the current node.

The first parameter is the most interesting: it is the Python variable that must contain a node
in the search tree. How can a variable be taken out of your program and stored in a Python
variable? What kind of Python variable will it be?

The answers are to use the LLDB API functions, which are provided as part of the LLDB Python
module. When running Python from inside LLDB, LLDB automatically provides the current
frame object as a Python variable, lldb.frame. This variable is of type SBFrame (see the
LLDB API for more information on SBFrame objects).

A frame object can be asked to find and return its local variable. The FindVariable()
function is called on the lldb.frame object to provide the dictionary variable as a Python
variable:

root = lldb.frame.FindVariable ("dictionary")

This line is executed in the Python script interpreter in LLDB, and it requests the current frame
to find the variable named dictionary and return it. The returned value is stored in the Python
variable named root. This answers the question of how to get the variable, but it still does
not explain what is put into root.

In the LLDB API, observe that the SBFrame method FindVariable() returns an object of
type SBValue. SBValue objects are used, among other things, to wrap up program variables
and values. There are many useful methods defined in the SBValue class that allow you to
get information or children values out of SBValues. The SBValue methods used in the DFS
function are GetChildMemberWithName(), GetSummary(), and GetValue().

NOTE: For more information on SBValues, see the SBValue.h header file.

80-N2040-31 Rev. E 81

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.5 Explanation of the DFS script
Before describing the example code in detail, following is a high-level overview of what the
code does.

The nodes in the binary search tree are of type tree_node *, which is defined as follows:
typedef struct tree_node
{
 const char *word;
 struct tree_node *left;
 struct tree_node *right;
} tree_node;

■ Lines 2 to 11 of the DFS function involve getting data out of the current tree node and
getting ready to do the actual search.

❒ Lines 2 to 4 of the function get the word, left, and right fields out of the current node
and store them in Python variables.

❒ Because root_word_ptr is a pointer to the word, and the word itself is required, line
5 calls GetSummary() to get a string containing the value out of the pointer.

❒ Because GetSummary() adds quotes around its result, lines 6 to 11 strip the
surrounding quotes off the word.

■ Lines 12 to 25 are the actual depth-first search.

❒ Line 12 checks to see if the word in the current node is the one being searched for. If
so, the search is completed.

❒ Line 13 returns the current path.

❒ Otherwise, line 14 checks to see if the search should go left (that is, the search word
comes before the current word).

❒ If the search goes left, line 15 checks to see if the left pointer child is NULL (None is
the Python equivalent of NULL).

❒ If the left pointer is NULL, then the word is not in this tree and the function returns an
empty path (line 16).

❒ Otherwise, it adds an L to the end of the current path string to indicate that the
search is going left (line 18), and then recursively searches on the left child (line 19).

❒ Lines 20-25 are the same as lines 14-19, except that the search goes right instead of
left.

It can be difficult to type all the DFS function code directly into the interpreter, because if you
make a single typing mistake, you must completely start over. Therefore, we recommend you
write longer, more complicated script functions in a separate file (in this case,
tree_utils.py), and then import the file into the LLDB Python interpreter.

80-N2040-31 Rev. E 82

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.6 Use the DFS script
Start by running the dictionary program in the Hexagon simulator, and assign it a unique port
number:

hexagon-sim -G 54321 dictionary -- Romeo_and_Juliet.txt
hexagon-sim INFO: The rev_id used in the simulation is 0x00008d68
(v68n_1024)
hexagon-sim INFO: Setting up debug server on port 54321

Port 54321 is used in this example, but you can use any available, valid port number.

Next, launch LLDB in a separate terminal, and use gdb-remote to attach to the dictionary
program running on the simulator:

>hexagon-lldb dictionary

Hexagon utilities (pagetable, tlb, pv) loaded
(lldb) target create "dictionary"
Current executable set to '/local/mnt/workspace/dictionary' (hexagon).
(lldb) gdb-remote 54321
Process 1 stopped
* thread #1, name = 'T1', stop reason = signal SIGTRAP
 frame #0: 0x00000000 dictionary`_start
dictionary`_start:
-> 0x0 <+0>: { jump 0x98 }
 0x4 <+4>: { jump 0x80 }
 0x8 <+8>: { jump 0x8c }
 0xc: <unknown>
(lldb) breakpoint set -n find_word
Breakpoint 1: where = dictionary`find_word + 12 at dictionary.c:108:6,
address = 0x0000644c
(lldb) c
Process 1 resuming

Back in the simulator’s terminal, wait for the message, Dictionary loaded. Enter
search word:, to appear, and then enter Romeo<CR>. In the LLDB terminal, you will see the
breakpoint at find_word and the program is stopped.

At this point, the DFS function is ready to determine whether the word, Romeo, is stored in
the tree. To use the function in LLDB on the dictionary program, do something like the
following:

Process 1 stopped
* thread #1, name = 'T1', stop reason = breakpoint 1.1
 frame #0: 0x0000644c dictionary`find_word(dictionary=0x000141c0,
word="romeo") at dictionary.c:108:6
 105 in the binary search tree. */
 106
 107 int find_word(tree_node *dictionary, char *word) {
-> 108 if (!word || !dictionary)
 109 return 0;
 110
 111 int compare_value = strcmp(word, dictionary->word);
(lldb) script
Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or
Ctrl-D.
>>> import tree_utils

80-N2040-31 Rev. E 83

Qualcomm Hexagon LLDB Debugger User Guide Script example

>>> root = lldb.frame.FindVariable ("dictionary")
>>> current_path = ""
>>> path = tree_utils.DFS (root, "Romeo", current_path)
>>> print path
LLRRL
>>> exit
(lldb)

The first bit of code shows starting LLDB, attaching to the dictionary program, and getting to
the find_word function in the LLDB. In this example, the interesting part begins when the
script command drops the program into the embedded interactive Python interpreter. This
code is described line-by-line.

■ The first line, import tree_utils:

Imports the file containing the DFS function (tree_utils.py) into Python.

When importing the file, the .py extension is omitted. You can call any function in the
imported file after assigning it the prefix tree_utils so Python knows where to look for
the function.

■ The line, root = lldb.frame.FindVariable ("dictionary"):

Gets the program variable dictionary, which contains the binary search tree and stores it
in the Python variable root. (For details on how this works, see Section 8.4.)

■ The line, current_path = "":

Initializes current_path from the root of the tree to the current node. Because the
search starts at the root of the tree, the current path starts as an empty string. While
searching goes right and left through the tree, the DFS function appends an R or an L to
the current path, as appropriate.

■ The line, path = tree_utils.DFS (root, "Romeo", current_path):

Calls the DFS function (prefixing it with the module name so Python can find it). The
function is passed three parameters: the binary tree stored in the variable root, the word
being searched for, and the current path. The path that the DFS function returns is
assigned to the Python variable path.

■ The last line, print path:

Indicates whether the word was found in the tree, and if found, the path from the tree
root to the word.

In this code example, the word, Romeo, was found in the tree; the search path through the
tree is left-left-right-right-left.

80-N2040-31 Rev. E 84

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.7 Use breakpoint command scripts
At this point, you are halfway through the scripting example. The word is confirmed to be in
the binary tree, and its location in the tree is known. The next task is to determine why the
binary search algorithm is not finding the word. Do this with breakpoint command scripts.

The binary search algorithm has two main decision points: the decision to follow the right
branch, and the decision to follow the left branch. Set a breakpoint at each of these decision
points, and attach a Python breakpoint command script to each breakpoint. The breakpoint
commands use the global path Python variable that you got from the DFS function.

Each time one of these decision breakpoints is hit, the script compares the actual decision
with the decision that the front of the path variable indicates should be made (that is, the first
character in the path). If the actual decision and the path agree, the front character is
stripped off the path, and execution is resumed. In this case, you never see the breakpoint
being hit.

But if the decision differs from what the path says it should be, the script prints a message
and does not resume execution, leaving you at the first point in the program where a wrong
decision is being made.

8.8 Python breakpoint command scripts
Python breakpoint command scripts are not what they seem. When you enter a Python
breakpoint command in LLDB, it appears that you are entering one or more plain lines of
Python. But LLDB then takes what you entered and wraps it into a Python function (just like
using the def Python command). It automatically gives the function an obscure, unique, hard-
to-stumble-across function name, and gives it two parameters: frame and bp_loc.

When the breakpoint is hit, LLDB wraps up the frame object where the breakpoint was hit,
and the breakpoint location object for the breakpoint that was hit, and puts them into Python
variables for you. It then calls the Python function that was created for the breakpoint
command, and passes in the frame and breakpoint location objects.

What does this mean for you when writing the Python breakpoint commands? It means that
there are two things to keep in mind:

■ To access any Python variables created outside your script, you must declare such
variables to be global. If you do not declare them as global, the Python function will treat
them as local variables, and you will get unexpected behavior.

■ All Python breakpoint command scripts automatically have a frame and bp_loc variable.
LLDB preloads the variables with the correct context for the breakpoint. You are not
required to use these variables, but they are available.

80-N2040-31 Rev. E 85

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.9 Decision point breakpoint commands
Following is what the Python breakpoint command script looks like for the decision to go
right:

global path
if path[0] == 'R':
 path = path[1:]
 thread = frame.GetThread()
 process = thread.GetProcess()
 process.Continue()
else:
 print "Here is the problem; going right, should go left!"

As a reminder, LLDB takes this script and wraps it in a function, like this example:
def some_unique_and_obscure_function_name (frame, bp_loc):
 global path
 if path[0] == 'R':
 path = path[1:]
 thread = frame.GetThread()
 process = thread.GetProcess()
 process.Continue()
 else:
 print "Here is the problem; going right, should go left!"

LLDB calls the function, passing in the correct frame and breakpoint location whenever the
breakpoint is hit.

Notes about this function:

■ First, it is accessing and updating a piece of state (the path variable), and conditioning its
behavior based upon this variable. Because the variable is defined outside of the script
(and therefore outside of the corresponding function), Python must know that it is
accessing a global variable. That is what the first line of the script does.

■ Next, the function checks where the path says the search should go, and compares it to
the actual decision (recall that the program is at the breakpoint for the decision to go
right). If the path agrees with the decision, the first character is stripped off of the path.

■ Because the decision matched the path, the program should resume execution by making
use of the frame parameter that LLDB guarantees will be available. The LLDB API
functions are used to get the current thread from the current frame, and then to get the
process from the thread. Once the process is gotten, use it to resume the execution
(using the Continue() function).

■ If the decision to go right does not agree with the path, execution is not resumed. The
breakpoint is allowed to remain stopped (by doing nothing), and a message is printed
noting that the problem has been found and explaining what the problem is.

80-N2040-31 Rev. E 86

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.10 Use breakpoint commands
Here is what happens when using the breakpoint commands in the program. The command
source list -n find_word displays the function containing the two decision points. In the
code below, the breakpoints should be set on lines 113 and 115:

(lldb) source list -n find_word
File: /Volumes/Data/HD2/carolinetice/Desktop/LLDB-Web-
Examples/dictionary.c.
101
102 int
103 find_word (tree_node *dictionary, char *word)
104 {
105 if (!word || !dictionary)
106 return 0;
107
108 int compare_value = strcmp (word, dictionary->word);
109
110 if (compare_value == 0)
111 return 1;
112 else if (compare_value < 0)
113 return find_word (dictionary->left, word);
114 else
115 return find_word (dictionary->right, word);
116 }
117

Set the breakpoints, enter the breakpoint command scripts, then see what happens:
(lldb) breakpoint set -l 113
Breakpoint created: 2: file ='dictionary.c', line = 113, locations =
1, resolved = 1
(lldb) breakpoint set -l 115
Breakpoint created: 3: file ='dictionary.c', line = 115, locations =
1, resolved = 1
(lldb) breakpoint command add -s python 2
Enter your Python command(s). Type 'DONE' to end.
> global path
> if (path[0] == 'L'):
> path = path[1:]
> thread = frame.GetThread()
> process = thread.GetProcess()
> process.Continue()
> else:
> print "Here is the problem. Going left, should go right!"
> DONE
(lldb) breakpoint command add -s python 3
Enter your Python command(s). Type 'DONE' to end.
> global path
> if (path[0] == 'R'):
> path = path[1:]
> thread = frame.GetThread()
> process = thread.GetProcess()
> process.Continue()
> else:
> print "Here is the problem. Going right, should go left!"
> DONE

80-N2040-31 Rev. E 87

Qualcomm Hexagon LLDB Debugger User Guide Script example

(lldb) continue
Process 696 resuming
Here is the problem. Going right, should go left!
Process 696 stopped
* thread #1: tid = 0x2d03, 0x000000010000189f dictionary`find_word +
127 at dictionary.c:115, stop reason = breakpoint 3.1
 frame #0: 0x000000010000189f dictionary`find_word + 127 at
dictionary.c:115
 112 else if (compare_value < 0)
 113 return find_word (dictionary->left, word);
 114 else
 -> 115 return find_word (dictionary->right, word);
 116 }
 117
 118 void
(lldb)

After setting the breakpoints, adding the breakpoint commands, and continuing, the program
runs and then hits one of the breakpoints, printing out the error message from the
breakpoint command. At this point in the tree, the search algorithm decided to go right, but
the path says the node should go to the left. Examining the word at the node where the
program stopped, and the search word, reveals the following:

(lldb) expr dictionary->word
(const char *) $1 = 0x0000000100100080 "dramatis"
(lldb) expr word
(char *) $2 = 0x00007fff5fbff108 "romeo"

In this example, the word at the current node is dramatis, while the word being searched for
is romeo, which comes after dramatis, alphabetically. Thus, going right seems to be the
correct decision. Use Python to see what it thinks the path from the current node to the word
is:

(lldb) script print path LLRRL

According to Python, the search needed to go left-left-right-right-left from the current node
to find the word being searched for. Double-check the tree to see what word it has at that
node:

(lldb) expr dictionary->left->left->right->right->left->word (const
char *) $4 = 0x0000000100100880 "Romeo"

In this example, the word being searched for is romeo, while the word at the DFS location is
Romeo. Here is the source of the problem: one word is uppercase, while the other word is
lowercase. There appears to be a case conversion problem somewhere in the program.

This is the end of the example showing how you can use Python scripting in LLDB to help find
bugs in your program.

80-N2040-31 Rev. E 88

Qualcomm Hexagon LLDB Debugger User Guide Script example

8.11 Source files for the example
The Python script used in this example is written for Python 2.7.

The code used in this example—including the DFS function, Dictionary program (with case-
conversion bug), and other Python script examples (tree_utils.py)—is available in the
following files from https://lldb.llvm.org/use/python.html#source-files-for-the-example:
■ tree_utils.py

Example Python functions using the LLDB API (including DFS)
■ dictionary.c

Sample dictionary program, with a bug

You can get the text for Romeo and Juliet from the Gutenberg Project
(http://www.gutenberg.org).

https://lldb.llvm.org/use/python.html#source-files-for-the-example
http://www.gutenberg.org

80-N2040-31 Rev. E 89

9 Debug with the booter image

To use LLDB with a booter image, such as bootimg.pbn or runelf.pbn, define the
LLDB_HEXAGON_BOOTER_PATH environment variable with the complete path to the booter
executable.

Load the application to debug in LLDB. When you run the program, LLDB launches hexagon-
sim with the correct flags to run your application under the booter.

For details on how to debug the application, see the booter image documentation.

80-N2040-31 Rev. E 90

10 Troubleshooting

This chapter describes potential problems with using LLDB, and how to resolve them.

10.1 Breakpoints on target are not being hit
You connect the debugger to the target, set a breakpoint, and continue. But the breakpoint is
never hit. Why is that? What can you do about it?

This issue typically happen when debugging code in a shared library. When the library is
loaded, the dynamic loader tells the debugger. The debugger then looks for the library, reads
the symbols and debug information, and updates breakpoints with new locations.

If your breakpoint is not hit, it is typically due to one of these reasons:

■ The program or the shared library is stripped (there are no symbols or debug
information).

If the binary does not have symbols or debug information, the debugger cannot set the
breakpoint.

To build with debug information, use -g on your compile line.

■ The search paths used by LLDB to find the library were not set correctly.

When the library is loaded on the target, the dynamic loader tells LLDB that it loaded the
library. Because there is no file system on the device, the library is loaded as, for example,
./libfoo.so.

If libfoo.so is not in the current directory, LLDB will not be able to find it. You can tell
LLDB where to look with the following command:

target modules search-paths add

If libfoo.so is in /local/mnt/target/libs, run the following command:
target modules search-paths add . /local/mnt/target/libs

This command tells LLDB to replace the period (.) at the start of the library name with the
following string:

/local/mnt/target/libs

Thus, ./libfoo.so becomes /local/mnt/target/libs/libfoo.so.

Ensure that you match the trailing slashes in the two arguments:
target modules search-paths add ./ /local/mnt/target/libs

This command changes ./libfoo.so to /local/mnt/target/libslibfoo.so, and
LLDB will not be able to find libfoo.so.

80-N2040-31 Rev. E 91

Qualcomm Hexagon LLDB Debugger User Guide Troubleshooting

■ The code was not run.

 If the breakpoint address is not run, the breakpoint will not be hit.

■ The code was run before the breakpoint was set.

The breakpoint address must be run after the breakpoint is set.

If you are not sure the code at a given address is going to be run, try setting a breakpoint on
main or some other function that you know will be run.

With the following command, you can turn on logging for the LLDB dynamic loader plug-in to
see if the loader and debugger are communicating correctly:

log enable lldb dyld

This command tells you what LLDB sees each time the loader communicates with LLDB, and
what the link map is as LLDB walks it.

10.2 File and line breakpoints are not being hit
If your file and line breakpoints are not being hit, first verify that your source files were
compiled with debug information. Typically, this means passing -g to the compiler when
compiling your source file.

When setting breakpoints in implementation source files (.c, .cpp, .cxx, .m, .mm, and so on),
by default, LLDB searches only for compile units whose file names match. If your code does
tricky things such as using #include to include source files, breakpoints in bar.c file are
inlined into the compile unit for the foo.c file:

% cat foo.c
#include "bar.c"
#include "baz.c"
...

If your code does this, or if your build system combines multiple files such that breakpoints
from one implementation file are compiled into another implementation file, you must
instruct LLDB to always search for inlined breakpoint locations by adding the following line to
your ~/.lldbinit file:

% *echo "settings set target.inline-breakpoint-strategy always"
>> ~/.lldbinit*

This line directs LLDB to always look in all compile units and search for breakpoint locations
by file and line, even if the implementation file does not match. Setting breakpoints in header
files always searches all compile units, because inline functions are commonly defined in
header files, and they often cause multiple breakpoints to have source line information that
matches many header file paths.

If you set a file and line breakpoint using a full path to the source file, this path must match
the full paths in the debug information. If the paths do not match (possibly due to passing in a
resolved source file path that does not match an unresolved path in the debug information),
this can cause breakpoints to not be resolved. Try setting breakpoints using the file base
name only.

80-N2040-31 Rev. E 92

Qualcomm Hexagon LLDB Debugger User Guide Troubleshooting

If you are using an IDE and move your project in your file system and then build again,
sometimes doing a clean-then-build will solve the issue. This will fix the issue if some .o files
did not get rebuilt after the move, because the .o files in the build folder might still contain
stale debug information with the old source locations.

LLDB supports debugging multiple ELF files, but only as separate targets. It supports
debugging a single file that is postprocessed to contain multiple ELF files (a stitched ELF file) if
the symbol tables are combined into one table. If a postprocessed file contains more than
one symbol table, LLDB does not supported debugging this file. The ELF standard states:

 "SHT_SYMTAB and SHT_DYNSYM. These sections hold a symbol table. Currently, an
object file may have only one section of each type, ..."

(https://refspecs.linuxfoundation.org/elf/gabi41.pdf)

You cannot load a stitched file without a symbol table and try to use more than one ELF file as
multiple symbol tables. You also cannot load a file and try to use a second file as an additional
symbol table. Only one symbol table per executable is allowed, except for shared libraries
loaded by the loader in the standard way.

10.3 Check for debug symbols
To determine if a module contains debug information, check whether that module has any
compile units (source files). For example:

(lldb) file /tmp/a.out
(lldb) image list
[0] 71E5A649-8FEF-3887-9CED-D3EF8FC2FD6E 0x0000000100000000
/tmp/a.out
 /tmp/a.out.dSYM/Contents/Resources/DWARF/a.out
[1] 6900F2BA-DB48-3B78-B668-58FC0CF6BCB8 0x00007fff5fc00000
/usr/lib/dyld
...
(lldb) script lldb.target.module['/tmp/a.out'].GetNumCompileUnits()
1
(lldb) script
lldb.target.module['/usr/lib/dyld'].GetNumCompileUnits()
0

In this example, the /tmp/a.out file includes a compile unit, while the /usr/lib/dyld file
does not.

https://refspecs.linuxfoundation.org/elf/gabi41.pdf

80-N2040-31 Rev. E 93

11 Architecture

For information on the LLDB architecture, see the LLDB website
(http://lldb.llvm.org/architecture/index.html).

http://lldb.llvm.org/architecture/index.html

80-N2040-31 Rev. E 94

A Acknowledgments

This document was derived from the LLDB Project documentation under the terms of the
LLDB Release License. Following are corresponding license statements.

■ LLDB Release License

■ Copyrights and Licenses for Third Party Software Distributed with LLDB

■ Block Implementation Specification

	1 Introduction
	1.1 Features
	1.2 Conventions
	1.3 Technical assistance

	2 Get started
	2.1 Start the debugger
	2.2 Debug commands
	2.2.1 Command arguments
	2.2.2 Breakpoints
	2.2.3 Completion
	2.2.4 Help
	2.2.5 Aliases
	2.2.6 Raw commands
	2.2.7 Python interpreter

	2.3 Load a program
	2.4 Set breakpoints
	2.5 Set watchpoints
	2.6 Start your program
	2.7 Control your program
	2.8 Examine the thread state
	2.9 Examine the stack frame state

	3 Use the debugger
	3.1 Start the debugger
	3.1.1 Command line arguments
	3.1.2 Command files
	3.1.3 Debug a remote application

	3.2 Debug options
	3.3 Debug commands
	3.3.1 Command options
	3.3.2 Execution commands
	3.3.3 Breakpoint commands
	3.3.4 Watchpoint commands
	3.3.5 Examine the variables
	3.3.6 Evaluate the expressions
	3.3.7 Examine the thread state
	3.3.8 Executable and shared library query commands
	3.3.9 Miscellaneous commands

	4 Frame and thread formatting
	4.1 Stack frame and thread format
	4.2 Format strings
	4.2.1 Variables
	4.2.2 Control characters
	4.2.3 Desensitizing characters
	4.2.4 Scoping

	4.3 Format example
	4.4 User-defined formats

	5 Frame symbolication
	5.1 Manual symbolication with LLDB
	5.2 Define load addresses for sections
	5.3 Load multiple executables
	5.4 Get variable information
	5.5 Use Python API to symbolicate
	5.6 Use built-in Python module to symbolicate

	6 Variable formatting
	6.1 Variable display
	6.2 Type formats
	6.2.1 Options

	6.3 Type summaries
	6.3.1 Summary strings
	6.3.2 Formatting summary elements
	6.3.3 Bit fields and array syntax

	6.4 Python scripts
	6.5 Regular expression type names
	6.6 Named summaries
	6.7 Synthetic children
	6.8 Filters
	6.9 Categories
	6.10 Finding formatters 101

	7 Python scripting
	7.1 LLDB API
	7.2 Embedded Python interpreter
	7.3 Run a script when a breakpoint is hit
	7.4 Create new command using a Python function

	8 Script example
	8.1 The test program and input
	8.2 The bug
	8.3 Check for the word in the tree: use DFS
	8.4 Work with program variables in Python
	8.5 Explanation of the DFS script
	8.6 Use the DFS script
	8.7 Use breakpoint command scripts
	8.8 Python breakpoint command scripts
	8.9 Decision point breakpoint commands
	8.10 Use breakpoint commands
	8.11 Source files for the example

	9 Debug with the booter image
	10 Troubleshooting
	10.1 Breakpoints on target are not being hit
	10.2 File and line breakpoints are not being hit
	10.3 Check for debug symbols

	11 Architecture
	A Acknowledgments

