Qualcommw

Qualcomm Technologies, Inc.

Qualcomm® Hexagon™ gprof Profiler
User Guide

80-N2040-29 Rev. E
November 21, 2018

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other
product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

US.A.

© 2014, 2015, 2018 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

Contents

1 INtroducCtion.......cccceei e ————— 3
1.1 CONVENTIONS ...tiiuitiiiiiieeiieeeeiee ettt eteeesiaeeteeestteeetseestseessseasseesnsaessseeensesensaeessesesseensseenssens 3
1.2 Technical aSSIStANCE.......ccvccvieeiieieeiierie et eie et ette e ete e e e e esteesbeesteenseessaesseenseenseeseens 3
72 O Y=Y = 4
2.1 Profile data fIles.......c.eeieuiiiciiiicie ettt 4
N o (o) £ (S (=) 0T) 4 PSSR 4
2.3 FEEADACKiiitiiiii ettt et e et e et e e tb e ab e e ebeeenreeenes 4
2 Use the Profiler....... e 5
2.1 Create the profile data fileccueieviiiioiiciieee e 6
2.2 Start the Profiler........cccvieceiiiiiirie ettt te e e e esbeenseens 7
2.2.1 EXECUtable fIlES .. .cciuiiiiiiiiiieciieciee ettt 7
2.2.2 Profile data fllesccceeviiriieeieeieierterie ettt 7
2.2.3 OULPUL 11 1eiiiiieiieeceie ettt et b e e e e be e stbeeesbeeesbeeenreeeseeas 7
2.3 Profile data......c.cccveeieeiieiesieceee ettt st e e ens 8
2.3.1T FIat PIOTIle..cuuiiceiieiie ettt ettt et e b e e et eenraeenaneas 8
T O 11 1 1 o) F OO UTURTRP 10
2.4 ProfiliNg QCCUIACYiiiiiiieiieeiie ettt ettt e ettt e e taeeeeeesaeessbeeesseeetsaenseeessseessseans 12
3 Profile data utilitiescccceevrriii 13
3.1 Profil@ MEIZE ..ocuvieieeiiieiieie ettt sttt et e et e st eteesteesaesseensaensaenseensaens 13
3.2 Profile dUMP ..ooeviieiiecee ettt e e e e nae e 13
3.2.1 DUMP FOTMAL......iiiiieiieiieieiie ettt eere e e esbe e e esseessesnseenseesseenseas 13
3.2.2 EXAMPIC c.eiiiiiiiiiie ettt ettt et ettt e e s be e enbeeeabeeeanes 14

80-N2040-29 Rev. E 2

1 Introduction

This document describes the Qualcomm® Hexagon™ gprof Profiler utility, which
displays information on the execution history of a program written for the Hexagon
processor. This document is a reference for experienced C programmers with assembly
language experience.

1.1 Conventions

Courier font is used for computer text and code samples:
unsigned long long hexagon sim read pcycles()
The following notation is used to define command syntax:

m Square brackets enclose optional items (e.g., [1abel]).
m Bold indicates literal symbols (e.g., [comment]).

m Anellipsis, . . ., follows items that can appear more than once.

1.2 Technical assistance

For assistance or clarification on information in this document, submit a case to
Qualcomm Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send
email to support.cdmatech@qti.qualcomm.com.

80-N2040-29 Rev. E

2 Overview

The gprof profiler includes the following features:

m [t operates as a stand-alone text-based application, and it is compatible with the
GNU gprof profiler.

m [t displays function-level and call-graph profiling information, which shows the
function execution times and caller/callee relationships in a profiled program.

m It works with any Hexagon target program (stand-alone, RTOS-based, single-
threaded, or multi-threaded).

NOTE The profiler performs post-mortem processing of the target application: that
is, it is used after the target application has completed executing.

2.1 Profile data files

The gprof profiler obtains its profiling information from data files that are generated by
the Hexagon simulator. These files are called gmon files.

For more information on generating profile data files, see the Qualcomm Hexagon
Simulator User Guide.

2.2 Profile reports

The profiling information generated by the gprof profiler is presented in the form of a
report which presents the number of cycles executed in each function, the functions that
each function called or was called by, and how many times each function was called.

Profile reports are generated in plain text format.

2.3 Feedback

If you have any comments or suggestions on how to improve the profiler (or this
document), please send them to:

support.cdmatech@qti.qualcomm.com

80-N2040-29 Rev. E

2 Use the Profiler

The profiler is used after an application is executed on the simulator. The simulator
generates one or more data files containing profiling information while it executes the
target application. After the simulation is completed, the profiler inputs the generated
profile data files and displays the profiling information.

Simulator | - - - - > Profiler

N

profile data file

Figure 2-1 Using the profiler

The profiler operates as a stand-alone application. It displays two types of profile
information:

m Flat profile information — The number of cycles executed in each function.

m Call-graph information — Which functions a given function called, which functions
called a given function, and how many times each function was called.

All profiling information is displayed as text data, which can be redirected to an output
file.

80-N2040-29 Rev. E

Qualcomm Hexagon gprof Profiler User Guide Use the Profiler

2.1 Create the profile data file

Before an application can be profiled, you must create a profile data file by simulating the
application with the command option, - -profile.

In some cases the profile data is distributed across multiple profile data files:

m When a program is a multi-threaded stand-alone program, its profile data files are
named for each hardware thread (for example, gmon.t 0, gmon.t 1,..).

m When a program is a multi-threaded RTOS application, its profile data files are named
for each software thread (for example, gmon.namel, gmon.name?2, ...).

In these cases, all of the profile data files must be specified on the profiler command line.
To simplify this effort, the relevant command option accepts wild-card characters (for
example, gmon*).

For more information on profile data files, see the Hexagon Simulator User Guide.

80-N2040-29 Rev. E 6

Qualcomm Hexagon gprof Profiler User Guide Use the Profiler

2.2

2.21

2.2.2

2.2.3

Start the profiler

To start the profiler from a command line, enter the following:

hexagon-gprof [executable files...] [profile data files...]
[> output file]

Executable files

The profiler optionally accepts one or more executable program files as input files. The
default is a . out.

The profiler uses the symbolic data in these files to create the profiling information.

NOTE When profiling an RTOS application system, each executable file in the
system must be specified as an input file.

Profile data files

The profiler optionally accepts one or more profile data files as input files. The default is
gmon .out.

All of the profile data files for the application must be specified. Multiple profile data files
can be specified using wild-card characters (such as gmonx).

NOTE Processing multiple profile data files can be memory-intensive.

Output file

The profiler writes all the profiling information it generates to the standard output. The
information can be optionally redirected to an output file.

80-N2040-29 Rev. E 7

Qualcomm Hexagon gprof Profiler User Guide

Use the Profiler

2.3

2.31

Profile data

The profiler displays two types of profile information:

Flat profile

Flat profile information — The number of cycles executed in each function.

Call-graph information — Which functions a given function called, which functions
called a given function, and how many times each function was called.

The flat profile lists the number of thread cycles executed in each function in a thread,

with the list sorted by self cycles. For example:

Flat profile for t 3234404640 88:

3
)

time
28.01
23.00
.23
.20
.88
.76
.79
.18
.18
.18
.18
.18
.02
.78
.09
.93
.65
.57
.49
.49
.32
.16
.12
.12
.12
.08
.04

i
IS

O O O O O O OO0 OO0 OO KFEFEFEDNDNNDNDNDDNDDNDDNWW D

cumulative
cycle(s)

693
1262
1614
1718
1814
1907
1976
2030
2084
2138
2192
2246
2296
2340
2367
2390
2406
2420
2432
2444
2452
2456
2459
2462
2465
2467
2468

self
cycle(s)

693
569
352
104
96
93
69
54
54
54
54
54
50
44
27
23
16
14
12
12
8

F N W Wwwhd

calls
4

u1

PR R RERPRRNMNPAMOFRP R A ORRPRPNMNOR®URAORER

self
Mc/call

0.

17

0.11

O O O O O O O

OOOOOOOOOPOOOOOOO

.35
.10
.01
.02
.01
.01
.05

.03
.05
.05
.00
.01
.01
.02

01

.00
.00
.00
.00
.00
.00
.00
.00
.00

total
Mc/call

0

.46

0.13

O O O O O o N

.29
.16
.01
.03
.02
.01
.06

.03
.36
.05
.00
.01
.01
.10

02

.00
.00
.00
.00
.00
.00
.00
.00
.00

name
h264FrontEnd CoreTaskHandler

VBUF_New

h264FrontEnd ThreadProc
h264BatchDecoder TryAcquireBatchServer
qurt_mutex_ lock

VBUF_Release

qurt_anysignal wait

h264_dec_query_ input
qurt_anysignal init

qurt_trampoline

qurt_rmutex_lock
qurt_elite thread stub(void*)
__save_rlé6_through r23

qurt_mutex unlock

qurt_anysignal clear
qurt_anysignal wait fatal
qurt_elite queue_ pop_front

__restore _rl6_through r23 and deallocfr
qurt_anysignal get

h264_dec_query_ output

qurt_rmutex unlock
__restore_rlé_through rl17 and deallocf
qurt_thread_set_ugp

qurt_ futex alloc _wait queue
qurt_get thread id in tcb
qurt_thread get_ id

VBUF_GetInfo

80-N2040-29 Rev. E

Qualcomm Hexagon gprof Profiler User Guide

Use the Profiler

Table 21

Values contained in the flat profile

Field

Description

% time

Percentage of the total number of cycles spent in a function

cumulative cycle(s)

Running total of cycles that includes the cycles for a specific function and all

the functions above it in the list

self cycle(s)

Number of cycles spent in a function on the current thread

calls

Total number of times a function was called on the current thread

self Mc/call

Average number of cycles per function call

total Mc/call

Average number of self cycles plus descendant cycles per function call

name

Function name

80-N2040-29 Rev. E

Qualcomm Hexagon gprof Profiler User Guide

Use the Profiler

2.3.2 Call graph

The call graph lists how many cycles were executed in each function plus its callers and
callees, with the list sorted by self plus child cycles. For example:

Call graph for t 3234404640_88:

self

children

called

qurt_trampoline [1]
qurt_elite_thread_stub (void*)
qurt_anysignal init [2]
qurt_thread set _ugp [3]
qurt_get_thread id in tcb [4]

352

qurt_trampoline [1]
qurt_elite_thread_stub (void*)
h264FrontEnd ThreadProc [1]
qurt_rmutex lock [2]
qurt_rmutex unlock [3]
qurt_thread get id [4]

qurt_elite_thread_stub (void*)
h264FrontEnd ThreadProc [3]

h264FrontEnd CoreTaskHandler [1]

qurt_anysignal wait [2]
qurt_anysignal get [3]

h264FrontEnd_ ThreadProc [1]

h264FrontEnd CoreTaskHandler [4]

VBUF_New [1]

h264BatchDecoder TryAcquireBatchServer [2]

VBUF_Release [3]
qurt_elite queue pop_ front [4]
h264_dec_query_ input [5]
qurt_anysignal clear [6]

h264 dec_query output [7]
VBUF_GetInfo [8]

h264FrontEnd CoreTaskHandler [1]

VBUF_New [5]
qurt_mutex lock [1]
qurt_mutex unlock [2]

h264FrontEnd CoreTaskHandler [1]
h264BatchDecoder TryAcquireBatchServer [6]

qurt_rmutex lock [1]
qurt_rmutex unlock [2]

h264FrontEnd_ CoreTaskHandler [1]

VBUF_Release [7]
qurt_mutex lock [1]
qurt_mutex_unlock [2]

h264FrontEnd CoreTaskHandler [1]

[1] 100.0
[2] 95.2
[3] 92.6
[4] 74.1
[5] 27.0
[6] 6.4
[7] 5.1
[81] 4.0

qurt_elite_queue_pop_front [8]
qurt_mutex_lock [1]
__save_rl6_through r23 [2]
qurt_mutex_unlock [3]
qurt_anysignal clear [4]

__restore_rl6_through r23 and deallocframe [5]

qurt_elite_queue_pop_front [1]
VBUF_Release [2]

80-N2040-29 Rev. E

10

Qualcomm Hexagon gprof Profiler User Guide Use the Profiler

Table 2-2 Values contained in the call graph
Field Description
index Caller | Not shown
Self Index value of the current function
For cross-reference purposes, this value is also displayed after the name
on each line in the column field
Callee | Not shown
% time Caller | Not shown
Self Percentage of cycles that a function and its callees executed on the
current thread
Callee | Not shown
self Caller |Estimated number of cycles executed by a function when called by the
current caller
Self Total number of cycles executed by a function on the current thread
Callee | Total number of cycles executed by the called function on the current
thread
children Caller |Estimated number of cycles executed by the callees of a function when
called by the current caller
Self Total number of cycles executed by the functions called from the current
function
Callee | Total number of cycles executed by the called function’s children
called Caller | Total number of times the calling function called a function, followed by the
total number of times the function was called
Self Total number of times a function was called on the current thread
Callee | Total number of times the called function was called by the current
function, followed by the total number of times the called function was
called
name Caller | Name of a calling function followed by its index value in brackets (such
as[1])
Self Name of a function followed by its index value in brackets
Callee |Name of a called function followed by its index value in brackets

80-N2040-29 Rev. E

11

Qualcomm Hexagon gprof Profiler User Guide Use the Profiler

2.4 Profiling accuracy

The profiler can only create estimated values for the following profile data:

m Children cycle counts

m Cycle counts for function callers and callees

Because the profiler does not receive this information directly from the profile data, it
must assume that for a given function F, the average number of cycles executed in each
call to F is not correlated to the functions that call F.

For example, if function F1 executes for a total of 100 cycles, and one quarter of the calls
to F1 originate from function F2, the profiler assumes that F1 contributes 25 cycles to F2’s
children cycle count.

This assumption is invalid if, for instance, F1 returns immediately after receiving a
specific argument value, and F2 is the only function that ever passes that value to F1.

You are responsible for being aware of such cases and interpreting the profiling
information appropriately.

80-N2040-29 Rev. E 12

3 Profile data utilities

The Hexagon SDK includes two utilities for manipulating profile data files:

m Profile merge — Merge profile data files

m Profile dump — Convert profile data file into text format

3.1 Profile merge

The profile merge utility merges two or more profile data files into a single file.
To start the profile merge utility from a command line, type:
hexagon-gmon-merge [-o output file] profile data files...

The default output file is gmon . sum.

3.2 Profile dump

The profile dump utility converts a profile data file into a text file containing raw profiling
data.

To start the profile dump utility from a command line, type:
hexagon-gmon-dump [-o output file] profile data file

The default output is the standard output.

3.21 Dump format
A profile dump contains the following information:

m File header
m Histogram records
m Call graph records

m Basic block records

80-N2040-29 Rev. E 13

Qualcomm Hexagon gprof Profiler User Guide

Profile data utilities

3.2.2 Example

File gmon.t all:

Header:
cookie

version

lgl
2

m'

lol lnl (Igmonl)

Record tag is GMON TAG TIME HIST

Histogram header:

PC range

Histogram size
Profiling rate

Dimension = '

0x0000: 0x003a
0x0001: 0x0000
0x0002: 0x0000
Oxldcf: 0x0001
0x1dd0o: 0x0039
0x1ddl: 0x0002
0x1dd2: 0x0000

Histogram total =

Max histogram value

1.
(
(
(

(
(
(

(

0x6d9cf4

7636 (0x1dd4)
1 (1.000000)

(0x00000000 - 0x00007750)

00*cyc', abbreviation = 'c'

58)
0)
0)

1)
57)
2)

0)

(7183604)

0x949a5 (608677)

Record tag is GMON TAG CG_ARC
ARC from 0x0000074c to 0x00005760 count = 1

Record tag is GMON_TAG_CG_ARC
ARC from 0x00003cdc to 0x00005400

Record tag is GMON_TAG_CG_ARC
ARC from 0x00005e44 to 0x00007230

Record tag is GMON TAG CG_ARC
ARC from 0x000050d4 to 0x000070a0

Record tag is GMON_TAG BB _COUNT
BB record count =

BB PC
BB PC
BB PC

BB PC
BB PC
BB PC
BB Total =

1109 (0x0455)

0x00000000, count =

0x00000098, count
0x0000009¢c, count

0x000070c0, count =
0x000070d0, count =
0x000070d8, count

0x006d9cf4

(7183604)
)

Max BB value = 0x949a5 (608677

58
58

1y

count =1

count = 1

count = 4

(0x0000003a)
(0x0000003a)
(0x00000001)

(0x00000004)
(0x00000004)
(0x00000004)

80-N2040-29 Rev. E

14

Qualcomm Hexagon gprof Profiler User Guide

Profile data utilities

Table 3-1 Values contained in the profile dump

Field Description
cookie String value identifying the file format (‘gmon’)
version File format version

1 — Standard GNU gmon format
2 — Hexagon gmon format

Record tag

Profile dump record tag

GMON_TAG TIME HIST — Histogram record
GMON_TAG_CG_ARC — Call graph record
GMON_TAG BB _COUNT — Basic block record

PC range

Text segment range covered by histogram

Histogram size

Size of histogram (in bytes)
NOTE: Does not include header record.

Profiling rate

Profile clock rate

Dimension

Physical dimensions of bin counts (after scaling by profile clock rate)

X: Y (2Z)

Histogram bin

X — Bin number

Y — Bin size (hexadecimal value)
Z — Bin size (decimal value)

Histogram total

Total size of histogram bins (in bytes)

Max histogram value

Maximum histogram value

ARC from X to Y

Call graph record
X — Calling function address
Y — Called function address

BB record count

Total number of basic block records

BB PC = X, count =
Y (2)

X — Basic block address
Y — Number of times basic block was executed (decimal value)
Z — Number of times basic block was executed (hexadecimal value)

BB Total

Total size of basic blocks (in bytes)

Max BB value

Maximum basic block value

80-N2040-29 Rev. E

15

	1 Introduction
	1.1 Conventions
	1.2 Technical assistance

	2 Overview
	2.1 Profile data files
	2.2 Profile reports
	2.3 Feedback

	2 Use the Profiler
	2.1 Create the profile data file
	2.2 Start the profiler
	2.2.1 Executable files
	2.2.2 Profile data files
	2.2.3 Output file

	2.3 Profile data
	2.3.1 Flat profile
	2.3.2 Call graph

	2.4 Profiling accuracy

	3 Profile data utilities
	3.1 Profile merge
	3.2 Profile dump
	3.2.1 Dump format
	3.2.2 Example

