

Qualcomm Hexagon Application Binary
Interface
User Guide

80-N2040-23 Rev. K

December 4, 2018

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other
product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2018 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

80-N2040-23 Rev. K 2

Contents

1 Introduction ...6
1.1 Conventions .. 6
1.2 Technical assistance.. 6

2 ABI overview..7

3 Data types ..8
3.1 Basic data types .. 8
3.2 Memory alignment ... 9

3.2.1 Static allocation... 10
3.2.2 Stack allocation ... 10
3.2.3 Heap allocation ... 11

4 Software stack ...12
4.1 Stack sections ... 12

5 Parameter passing ..14
5.1 Fixed argument list function calls .. 14
5.2 Variable argument list function calls .. 16
5.3 Vector register usage for function calls .. 16

6 Return values...17

7 Register usage across calls ...18
7.1 Outgoing memory arguments ... 18

8 C++ exception handling..19

9 Operating system interface ..20

10 Process initialization...21
10.1 Special registers.. 21
10.2 General registers ... 21

80-N2040-23 Rev. K 3

Qualcomm Hexagon Application Binary Interface User Guide Contents

11 Program loading..22
11.1 Position-independent objects .. 22

12 Object files...23
12.1 Compatibility .. 23
12.2 ELF header ... 24
12.3 Sections... 25
12.4 Relocation... 26

12.4.1 Relocation fields ... 26
12.4.2 Relocation symbols ... 27
12.4.3 Relocation types.. 28
12.4.4 Special relocation types .. 32

12.5 Linker-generated symbols .. 32

13 Program headers...33

14 Dynamic linking...34
14.1 Dynamic section ... 35
14.2 Global offset table .. 36
14.3 Procedure linkage table .. 37

15 Thread-local storage...40
15.1 Thread-local storage section... 40
15.2 Runtime allocation.. 40
15.3 Load-time allocation... 41
15.4 Interface .. 41
15.5 Thread-local storage access .. 42

15.5.1 General dynamic (GD).. 42
15.5.2 Local dynamic (LD).. 42
15.5.3 Initial executable (IE).. 43
15.5.4 Local executable (LE)... 43

16 Coding examples...44
16.1 Register use... 44
16.2 Assembler symbols... 45
16.3 Addressing constraints.. 46
16.4 Function prologs and epilogs.. 47

16.4.1 Absolute .. 47
16.5 Direct function call ... 49

16.5.1 Absolute .. 49
16.5.2 Position-independent... 49

80-N2040-23 Rev. K 4

Qualcomm Hexagon Application Binary Interface User Guide Contents

16.6 Indirect function call... 50
16.6.1 Absolute .. 50
16.6.2 Position-independent... 51

16.7 Direct branch .. 52
16.7.1 Absolute and position-independent... 52

16.8 Indirect branch.. 53
16.8.1 Absolute .. 53
16.8.2 Position-independent... 54

16.9 Data access ... 55
16.9.1 Absolute .. 55
16.9.2 Position-independent... 56

16.10 Thread-local storage ... 57
16.10.1 Absolute .. 57
16.10.2 Position-independent... 60

80-N2040-23 Rev. K 5

Qualcomm Hexagon Application Binary Interface User Guide Tables

Tables
Table 3-1 Basic data type representation.. 8
Table 3-2 C data type alignment requirements... 9
Table 7-1 Register usage across calls ... 18
Table 12-1 Object processor version flags ... 24
Table 12-2 Section indexes for common small data .. 25
Table 12-3 Relocation fields .. 26
Table 12-4 Relocation symbols .. 27
Table 12-5 Relocation types ... 28
Table 12-6 Special relocation types ... 32
Table 12-7 Linker-generated symbols .. 32
Table 14-1 Dynamic array tags .. 35
Table 16-1 Special assembler symbols used in examples 45
Table 16-2 Function prolog and epilog (absolute) ... 47
Table 16-3 Function prolog and epilog (absolute – GD or LD access).................. 47
Table 16-4 Function prolog and epilog (absolute – IE or LE access) 48
Table 16-5 Direct function call (absolute).. 49
Table 16-6 Direct function call (position-independent) ... 49
Table 16-7 Indirect function call (absolute) ... 50
Table 16-8 Indirect function call (absolute – no small data).................................. 50
Table 16-9 Indirect function call (position-independent)....................................... 51
Table 16-10 Indirect function call (position-independent, no small data) 51
Table 16-11 Direct branch (absolute and position-independent) 52
Table 16-12 Data access (absolute) .. 55
Table 16-13 Data access (absolute – no small data)... 55
Table 16-14 Data access (position-independent – no small data) 56
Table 16-15 Thread-local storage (V4 absolute – GD access)................................. 57
Table 16-16 Thread-local storage (V4 absolute – LD access) 58
Table 16-17 Thread-local storage (V4 absolute – IE access)................................... 59
Table 16-19 Thread-local storage (V4 position-independent – IE access) 60

80-N2040-23 Rev. K 6

1 Introduction

This document describes the application binary interface (ABI) for Qualcomm® Hexagon™
processor versions V4, V5x, and V6x.

The Hexagon ABI is based on the System V ABI. This document describes only the Hexagon-
specific aspects of the ABI. For information on the complete ABI specification, see the following
documents:

 System V Application Binary Interface, Edition 4.1
(http://www.sco.com/developers/devspecs/gabi41.pdf)

 Solaris Linker and Libraries Guide, chapter 8 (Thread-Local Storage)
(http://docs.oracle.com/cd/E19253-01/817-1984/)

1.1 Conventions
Courier font is used for computer text and code samples, for example,
hexagon_sim_read_pcycles().

The following notation is used to define command syntax:

 Square brackets enclose optional items, for example, [label].

 Bold indicates literal symbols, for example, [comment].

 The vertical bar character, |, indicates a choice of items.

 Parentheses enclose a choice of items, for example, add|del).

 An ellipsis, ... , follows items that can appear more than once.

1.2 Technical assistance
For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send email to
support.cdmatech@qti.qualcomm.com.

http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/devspecs/gabi41.pdf
http://www.sco.com/developers/devspecs/gabi41.pdf
http://docs.oracle.com/cd/E19253-01/817-1984/

80-N2040-23 Rev. K 7

2 ABI overview

The ABI defines a set of conventions that enables the inter-operation of code written in different
languages and at different times. These conventions include:

 Hardware representation of C data types

 Software stack configuration

 Parameter passing

 Return values

 Register usage across function calls

 C++ exception handling

 Operating system interface

 Process initialization

 Program loading

 Object files

 Program headers

 Dynamic linking

 Thread-local storage

Coding examples are provided for some of the basic operations.

80-N2040-23 Rev. K 8

3 Data types

This chapter describes how C data types are represented on the Hexagon processor.

3.1 Basic data types
Table 3-1 lists the basic C data types and how they are represented in hardware on the Hexagon
processor.

By default, the char data type is unsigned. If a char variable must be signed, declare the variable
with the type signed char.

By default, enumeration types are assigned the smallest integer type that can store the enumeration
values. For example, an enum type containing constants in the range 0–255 is stored in memory as
a single byte.

NOTE: The command option -fno-short-enums causes the C compilers to allocate all
enumeration types in 4 bytes.

Table 3-1 Basic data type representation

C Type Size
(in bytes)

Hardware
Representation

Char 1 Byte

Short 2 Halfword

Int 4 Word

Long 4 Word

Long long 8 Doubleword

Float 4 Word

Double 8 Doubleword

Long double 8 Doubleword

Enum variable variable

Pointer 4 Word

80-N2040-23 Rev. K 9

Qualcomm Hexagon Application Binary Interface User Guide Data types

3.2 Memory alignment
The Hexagon processor requires data types to be properly aligned in memory when they are
accessed. An item of size N bytes is aligned when its memory address mod N yields 0. For
example, a 4-byte memory access is aligned when the address is an integral multiple of 4.

Data types are aligned only when they are accessed. Unaligned types are allowed and must be
handled properly by the compilers. Problems arise only when dereferencing pointers are cast to
data types with stricter alignment requirements than the original type. For example:

int g(int *p){
 return *p;
}

int f(void){
 unsigned char a[4];
 a[0] = 0xbeU;
 a[1] = 0xbaU;
 a[2] = 0xfeU;
 a[3] = 0xcaU;
 return g(a);
}

Table 3-2 C data type alignment requirements

Data type Alignment requirement
Scalar Align to size of item (Section 3.1).

Enumeration Align according to underlying data type.

Array  Align array according to data type of its array element.
 Align array elements according to their data type.

Structure  Align structure to alignment of structure member with largest alignment.
 Align members according to their data type.
 If necessary, insert pad bytes between members.
 If necessary, insert pad bytes after last member to make the structure size an

integral multiple of the alignment requirement. (This ensures correct pointer
arithmetic for pointers to structures.)

NOTE: Members are allocated in memory in the order they appear in a struct
definition.

Packed structure  Align structure to one-byte boundary.
 Align members to one-byte boundaries.
 Pad bytes not inserted between members.
NOTE: Members are guaranteed only to be one-byte aligned.

Bit field  Same size and alignment rules as non-bit field structure members.
 Allocated from right to left (i.e., least to most significant).
 Must reside entirely within a storage unit appropriate for their data type.
 Unsigned by default. To create signed bit fields use the signed type specifier.

Union Align to alignment of member with largest alignment.

80-N2040-23 Rev. K 10

Qualcomm Hexagon Application Binary Interface User Guide Data types

In this example, array a is guaranteed only to be 1-byte aligned, but function g() accesses a as an
int, which (unless it is declared with the packed attribute) must be 4-byte aligned. Thus the
compiler will generate a memw instruction in g().

Alignment attributes

Nonstandard memory alignment requirements must be explicitly specified using the aligned
attribute. For example:

int buffer[N] __attribute__((aligned(8)));

NOTE: You can specify any alignment value larger than the one required.

The packed attribute can be used to declare that a data type must not be aligned. packed and
aligned can be used together to align a data type to more than 1 byte but less than the type’s
natural alignment. For example:

int i __attribute__((packed, aligned(2)));

In this example, i is 2-byte aligned.

3.2.1 Static allocation
Data types statically allocated in memory are subject to the alignment requirements listed in
Section 3.2. No additional requirements exist.

3.2.2 Stack allocation
Data types allocated on the software stack (Chapter 4) are subject to the alignment requirements
listed in Section 3.2.

Data allocated on the stack is only guaranteed to be up to 8-byte aligned. To allocate stack data
with more than 8-byte alignment, the data address must be manually aligned. Follow these steps:

1. Declare a local char array with the following number of elements:

(size(data) + alignment(data) - 1)

2. Cast the address of the array to an integer.

3. Clear the log2(alignment) low bits of the integer.

4. Cast the resulting value to a pointer to the type to be allocated.

NOTE: Currently, the compilers do not support stack realignment.

80-N2040-23 Rev. K 11

Qualcomm Hexagon Application Binary Interface User Guide Data types

3.2.3 Heap allocation
Data types allocated on the heap are subject to the alignment requirements listed in Section 3.2.

The standard allocator functions (malloc, realloc, calloc) return a pointer that is aligned to the
largest alignment required by any type in the absence of the aligned attribute. For the Hexagon
processor this value is currently 8 bytes.

To allocate an object on the heap with alignment greater than 8 bytes, use the memalign function.

NOTE: memalign automatically performs the procedure described in Section 3.2.2.

80-N2040-23 Rev. K 12

4 Software stack

The software stack is divided into frames. In general, there is one frame for each active function.
The exception to this rule is described later. First, we describe the layout of each frame.

The current stack frame is marked by the frame pointer register (R30) and the stack pointer register
(R29). The stack grows toward smaller addresses in memory. Stack frames are always aligned on
8-byte boundaries. This enables the alignment of data within each frame.

4.1 Stack sections
Each stack frame contains the following sections, in decreasing memory order:

1. Saved R31, saved R30

The allocframe instruction is used to save the values of R31 (the function return address)
and R30 (frame pointer) during the function prologue.

2. Locals/spill area

This optional area contains enough space for:

 Any local variables that require stack space

 Any register spills (including callee saved registers) that are required

The size of this area is determined at compile time on a per function basis. To minimize the
amount of padding between variables, QTI recommends (but does not require) that the data in
this section is ordered.

3. Alloca area

This optional area contains space allocated by alloca.

The size of this area is determined at run time based on the alloca calls that are executed.
Initially, this size is zero.

4. Outgoing memory arguments

This optional area is used when the function calls one or more functions whose arguments
cannot all be passed in registers.

The size of this area is determined at compile time on a per function basis. Within the function,
the compiler examines all function calls and determines the maximum space required for any
call. This scheme makes function calls fast and simple at the expense of some wasted space.

80-N2040-23 Rev. K 13

Qualcomm Hexagon Application Binary Interface User Guide Software stack

Each section must be aligned to an 8-byte boundary. If necessary, add padding in the high memory
address of each section.

Within each section, the normal data alignment rules apply (Section 3.2).

Figure 4-1 Stack in memory

NOTE: For performance reasons, certain functions are allowed to avoid the overhead of allocating
and deallocating a frame. A function that does not make any calls is called a leaf function.
A leaf function that does not require any stack space (i.e., the size of each optional area is
zero) cannot allocate a frame.

R29

 R30

Lower Address

Higher Address

Saved R31
Saved R30

Previous Frame

Current Frame

Unallocated
Stack

Locals/Spill Area

Alloca Area

Outgoing Memory
Arguments Area

Locals/Spill Area

Alloca Area

Outgoing Memory
Arguments Area

Saved R31
Saved R30

80-N2040-23 Rev. K 14

5 Parameter passing

Parameters are passed to functions in up to six general purpose registers: R0–R5. Any parameters
that cannot fit in these registers are passed on the software stack.

The calling function allocates space in the lower portion of its frame for these. Each function
allocates the maximum amount of space required by any of its calls in its outgoing memory
arguments area.

If the function does not make any calls, or if all of its calls can pass all parameters in registers, then
the outgoing memory arguments area of the stack frame is not allocated.

5.1 Fixed argument list function calls
The most common case for function calls is a fixed argument length function. In C, these are
functions with:

 A function prototype that contains a fixed number of arguments.

 No function prototype, also known as Kernighan and Ritchie (K&R) style.

A variable argument length function whose prototype is missing at the call site can lead to subtle
program errors. This is due to the mismatch between the parameter passing of the caller and callee.

For each fixed argument length call, the parameters are processed from left to right as follows:

 Any parameter (including aggregates) with size up to 64 bits is a candidate to be passed in a
register. Parameters up to 32 bits in size are passed in a single register. Larger parameters are
passed in a register pair.

 Candidates are assigned to registers R0 through R5 in order.

 Candidates larger than 32 bits are passed in a register pair. If the next available register is an
odd-numbered register, that register is skipped (left unused), and the candidate is placed in the
next even-odd pair. If the next available register is R5, then the candidate is passed on the
stack.

 Candidates larger than 64 bits are passed on the stack. The alignment rules are the same as for
static data (Section 3.2).

 Do not attempt to recover skipped parameter registers by filling them with subsequent
parameters. However, we will continue using parameter registers after a candidate larger than
64 bits has been placed on the stack.

 Once all the parameter registers have been filled or skipped, all remaining parameters are
passed on the stack. The normal alignment rules apply (Section 3.2).

80-N2040-23 Rev. K 15

Qualcomm Hexagon Application Binary Interface User Guide Parameter passing

Example 1: scalars

extern int foo(short, float, int, double);
foo(i, a, b, c);

The parameters are passed as follows:

i R0
a R1
b R2
c R5:R4

Example 2: arrays and structures

extern int bar();
struct {int length, width;} st1;
struct {int a; int bvec[8];} st2;
bar(i, st1, st2);

The parameters are passed as follows:

i R0
st1 R3:R2
st2.a In memory, at R29+0
st2.bvec In memory, at R29+4

NOTE: R29 is the stack pointer (sp).

80-N2040-23 Rev. K 16

Qualcomm Hexagon Application Binary Interface User Guide Parameter passing

5.2 Variable argument list function calls
Variable argument list functions are a special type of function in C where the number and types of
arguments can vary. The best-known example of this is the printf function in the C library, where
the function’s number and type of arguments change, depending on the first argument given: a
format string. In general, variable argument functions determine the number and type of their
arguments by programming conventions.

For these functions, we pass the named (and typed) parameters in the same manner as for fixed
argument list functions. The remainder of the arguments are passed on the stack. The normal
alignment rules apply (Section 3.2).

Example:

extern int vfoo(int, long long, short, ...);
vfoo(a1, a2, a3, a4, (double)a5, a6);

The parameters are passed as follows:

a1 R0
a2 R3:R2
a3 R4
a4 In memory, at R29+0
a5 In memory, at R29+8, due to 8 byte alignment
a6 In memory, at R29+16

NOTE: R29 is the stack pointer (sp).

5.3 Vector register usage for function calls
Vector registers V0 to V15 are used for input parameters. Registers W0 to W7 (V1:V0...) are used
for Vector Pair arguments. The remaining vector parameters are on the stack. For example, the
Passing Vector, VectorPair, uses v0, v2, v3. The v1 parameter is not used.

Vector registers V0 and V1:V0 are used for return results.

Variadic vector arguments are passed on the stack.

All vector registers remain caller saves as opposed to callee saves, which does not affect existing
assembly or C Intrinsic applications. This includes vector predicate and vector registers.

80-N2040-23 Rev. K 17

6 Return values

Functions can return values up to 32 bits in size (including structures) in register R0 and up to 64
bits in size (including structures) in the R1:0 register pair. For return values larger than 64 bits, the
caller allocates space in its frame large enough to hold the return value.

The space is aligned according to the normal alignment rules for the returned type (Section 3.2).
The caller passes an extra argument at the beginning of the parameter list (in R0) containing an
address of the allocated space.

Example:

typedef struct {
 int a;
 int b;
 int c;
} S;

S foo(int x)
{
 S s;
 ...
 return s;
}

void bar(int y)
{
 S s = foo(y);
}

This code will be automatically converted by the compiler to the following:

void foo(S *hidden, int x)
{
 S s;
 ...
 *hidden = s;
}

void bar(int y)
{
 S s;
 foo(&s, y);
}

80-N2040-23 Rev. K 18

7 Register usage across calls

The registers are divided into two groups, according to how they are used across function calls:

 Caller saved

At a call site, the caller must assume that the callee changes the values of these registers.
Therefore, the caller must save the values of these registers before making the call (if
necessary), and restore them after the call.

 Callee saved

At a call site, the caller can assume that the callee does not change the values of these registers.
Therefore, the callee must save and restore the values of these registers, if necessary.

7.1 Outgoing memory arguments
The outgoing-memory-arguments section of the caller’s frame is caller-saved. In other words, the
caller assumes that the callee will overwrite the values of parameters passed. This applies only to
the outgoing memory arguments space used by the current call, and not to the total space allocated
by the caller.

Table 7-1 Register usage across calls

Register Usage Saved by
R0 - R5 Parameters a

a The callee can change parameter values (Chapter 5).

–

R6 - R15 Scratch b

b R14-R15 and R28 are used by the procedure linkage table (Section 14.3).

Caller

R16 - R27 Scratch Callee

R28 Scratch b Caller

R29 - R31 Stack frames Callee c

c R29-R31 are saved and restored by allocframe and deallocframe (Chapter 4).

P3:0 Processor state Caller

80-N2040-23 Rev. K 19

8 C++ exception handling

The exception handling model for the Hexagon processor is based on the DWARF2 stack
unwinding mechanism.

Registers R0 to R3 are reserved to communicate between exception handling library routines and
exception handlers.

The stack location for saved LR (see Figure 4-1) is used to store the address of an exception
handler to which the procedure returns.

80-N2040-23 Rev. K 20

9 Operating system interface

Processes run in a 32-bit virtual address space. The Hexagon memory management hardware
translates virtual addresses into physical addresses.

The memory management system supports the following page sizes (in bytes): 4K, 16K, 64K,
256K, 1M, 4M, 16M.

80-N2040-23 Rev. K 21

10 Process initialization

The initial state of a process is established by setting certain Hexagon processor registers to well-
defined initial values.

10.1 Special registers
The GP register is set to the starting address of the process’s small data area, as referenced by the
program symbol, _SDA_BASE_.

The UGP register is set to the highest-memory-address-plus-one of the process’s thread-local
storage area (Chapter 15).

The R28 register is set to the address of a function which the process must call when it terminates.
The process is responsible for saving this address so it can be called later on. After saving the
address, the process can freely use the R28 register.

NOTE: All other special registers contain unspecified values at process initialization, and
operating systems are free to specify their contents.

10.2 General registers
Except for R28 and R29 (also known as SP, which points to the top of the stack), the Hexagon
general registers contain unspecified values at process initialization.

NOTE: The contents of stack memory below the top of stack is always undefined.

80-N2040-23 Rev. K 22

11 Program loading

When loading an object into memory, the relative positions of the object’s several segments must
be preserved.

Additionally, absolute objects must reside at the same virtual address that was used to build them.

11.1 Position-independent objects
A position-independent object must be loaded at a virtual address with address alignment equal to
the alignment of its largest segment. This ensures the alignment of all the object’s segments.

The small data area must be aligned to a 64-byte address boundary. Therefore, position-
independent objects that contain a small data area must be loaded at a virtual address aligned to 64
bytes.

NOTE: The alignment requirement for position-independent objects might change in future
versions of the Hexagon processor.

80-N2040-23 Rev. K 23

12 Object files

Hexagon object files are stored in the ELF file format (short for Executable and Linkable Format).
This chapter describes object file compatibility and how various ELF elements are defined in
Hexagon. It covers the following topics:

 Compatibility

 ELF header

 ELF sections

 Relocation

12.1 Compatibility
Object files for the Hexagon V4, V5x, and V6x processors are backward compatible when
executed in User mode.

Kernel-mode object files are not backward compatible due to changes in the system-level
instruction set.

80-N2040-23 Rev. K 24

Qualcomm Hexagon Application Binary Interface User Guide Object files

12.2 ELF header
The ELF header member e_machine is set to the symbolic value EM_HEXAGON (which has the
decimal numeric value 164).

The member e_type can additionally be set to the symbolic value ET_HEXAGON_IR (numeric
value 0xff00) to indicate that an object file contains compiler-generated intermediary
representation language.

Bits [11:0] of the member e_flags indicate the version of the Hexagon processor that the object
file was created for. Table 12-1 lists the possible values for this bit field.

NOTE: ISA is short for Instruction Set Architecture. In this context, it is considered equivalent to
processor version.

Table 12-1 Object processor version flags

Name Value Processor Version
EF_HEXAGON_MACH_V4 0x3 Hexagon V4

EF_HEXAGON_MACH_V5 0x4 Hexagon V5

EF_HEXAGON_MACH_V55 0x5 Hexagon V55

EF_HEXAGON_MACH_V60 0x60 Hexagon V60

EF_HEXAGON_MACH_V61 0x61 Hexagon V61

EF_HEXAGON_MACH_V62 0x62 Hexagon V62

EF_HEXAGON_MACH_V65 0x65 Hexagon V65

EF_HEXAGON_MACH_V66 0x66 Hexagon V66

EF_HEXAGON_MACH_V67 0x67 Hexagon V67

EF_HEXAGON_MACH_V67T 0x8067 Hexagon V67 Small Core (V67t)

80-N2040-23 Rev. K 25

Qualcomm Hexagon Application Binary Interface User Guide Object files

12.3 Sections
In addition to supporting the standard ELF section indexes, Hexagon object files can also include
processor-specific section indexes for common symbols stored in the small data area
(Section 10.1). These indexes are listed in Table 12-2.

The suffix on the processor-specific section index names indicates the access size (in bytes) of the
data in the corresponding section. The one name lacking a suffix is used to specify sections that
have an access size other than one of the explicitly-specified values.

To mark a section as residing in the small data area, the member, sh_flags, can be set to the
symbolic value, SHF_HEXAGON_GPREL (numeric value 0x10000000).

Table 12-2 Section indexes for common small data

Name Value Description
SHN_HEXAGON_SCOMMON 0xff00 Other access sizes

SHN_HEXAGON_SCOMMON_1 0xff01 Byte-sized access

SHN_HEXAGON_SCOMMON_2 0xff02 Half-word-sized access

SHN_HEXAGON_SCOMMON_4 0xff03 Word-sized access

SHN_HEXAGON_SCOMMON_8 0xff04 Double-word-size access

80-N2040-23 Rev. K 26

Qualcomm Hexagon Application Binary Interface User Guide Object files

12.4 Relocation
Many different types of relocations are performed on the instructions and data stored in a Hexagon
object file. The relocation types differ according to the instruction and data fields that are affected,
and the kinds of calculations that are applied to the fields to perform the relocation.

12.4.1 Relocation fields
The relocation types are expressed using the data fields defined in Table 12-3:

 Name – Specifies the name of the relocatable field (referenced in Table 12-5).
 Width – Specifies the width (in bits) of the relocatable bit field. Depending on the relocation

type, either all or some of these bits are modified by the relocation.
 Effective bits – Specifies how many of the bits in the relocation field are modified.
 Bitmap – Specifies a bit pattern which indicates the bits in the relocation field that are actually

modified by the relocation.
 Byte address alignment – Specifies the byte address alignment (1, 2, or 4) that is required for

the relocation field.

Table 12-3 Relocation fields

Name Width Effective bits Bitmap Byte address
alignment

Word8 8 8 0xff 1

Word16 16 16 0xffff 2

Word32 32 32 0xffffffff 4

Word32_LO 32 16 0x00c03fff 4

Word32_HL 64 a

a The relocation calculations are applied to two 32-bit words in sequential addresses: first 
“(S + A) >> 16”, then “(S + A)”.

16
and 16

0x00c03fff
0x00c03fff

4

Word32_GP 32 16 N/A b

b The bitmap varies according to the instruction opcode.

4

Word32_B7 32 7 0x00001f18 4

Word32_B9 32 9 0x003000fe 4

Word32_B13 32 13 0x00202ffe 4

Word32_B15 32 15 0x00df20fe 4

Word32_B22 32 22 0x01ff3ffe

Word32_M21 32 21 0x0fff3fe0 4

Word32_M25 32 25 0x0fff3fef 4

Word32_R6 32 6 0x000007e0 4

Word32_U6 32 6 N/Ab 4

Word32_U16 32 16 N/Ab 4

Word32_X26 32 26 0x0fff3fff 4

80-N2040-23 Rev. K 27

Qualcomm Hexagon Application Binary Interface User Guide Object files

NOTE: Bitmaps are used to specify operands in instruction op-codes that must be relocated. When
applying a relocation in these cases, the bits that are not specified in the bitmap must be
protected from accidental modification.

12.4.2 Relocation symbols
Each relocation type is defined as a formula which is expressed in terms of the symbols listed in
Table 12-4.

Table 12-4 Relocation symbols

Symbol Description
A Addend used to compute value of relocatable field.

B Base address of object loaded into memory.

G Offset into global offset table (Section 14.2) for the entry of a symbol.

GOT Address of entry zero in global offset table (Section 14.2).

GP Value of GP register, typically the base address of the small data area (_SDA_BASE_).

L Offset into procedure linkage table (Section 14.3) for the entry of a symbol.

MB Base address of all strings consumed by compiler message base optimization
(_MSG_BASE_).

P Place address of the field being relocated.
NOTE: This value is computed using r_offset in the relocation entry.

S Value of the symbol whose index resides in the relocation entry (unless the object is a
shared object and the symbol index is SHN_UNDEF, in which case this is equivalent to
symbol B).

TLS Thread-pointer-relative offset to a thread-local symbol.

T Base address of the static thread-local template that contains a thread-local symbol.

80-N2040-23 Rev. K 28

Qualcomm Hexagon Application Binary Interface User Guide Object files

12.4.3 Relocation types
The relocation types are applied in a similar manner to relocatable, executable, and shared object
files, except where noted otherwise.

Only Elf32_Rela relocation entries are used. Therefore, the original content of the instruction
and data fields is irrelevant when calculating the relocation.

The relocation types are defined in Table 12-5:

 Name – Specifies the symbolic name of the relocation type.

 Value – Specifies the corresponding numeric identifier for the relocation type.

 Field – Specifies the data field affected by the relocation type (Table 12-3).

 Relocation – Sspecifies the algebraic formula used to perform the relocation (with the formula
symbols defined in Table 12-4).

 Result – Specifies the numeric format (signed or unsigned) of the relocated value.

 Action – Specifies an additional operation performed on the relocated value as part of the
relocation:

 Truncate – Truncate the relocated value to fit the relocation field.

 Verify – Check that the relocated value can fit in the relocation field, and generate an error
if the value is too big to fit in its relocation field.

 None – Perform no operation on the relocated value.

Table 12-5 Relocation types

Name Value Field Relocation Result Action
R_HEX_NONE 0 None None None None

R_HEX_B22_PCREL 1 Word32_B22 (S + A - P) >> 2 Signed Verify

R_HEX_B15_PCREL 2 Word32_B15 (S + A - P) >> 2 Signed Verify

R_HEX_B7_PCREL 3 Word32_B7 (S + A - P) >> 2 Signed Verify

R_HEX_LO16 4 Word32_LO (S + A) Unsigned Truncate

R_HEX_HI16 5 Word32_LO (S + A) >> 16 Unsigned Truncate

R_HEX_32 6 Word32 (S + A) Unsigned Truncate

R_HEX_16 7 Word16 (S + A) Unsigned Truncate

R_HEX_8 8 Word8 (S + A) Unsigned Truncate

R_HEX_GPREL16_0 9 Word32_GP (S + A - GP) Unsigned Verify

R_HEX_GPREL16_1 10 Word32_GP (S + A - GP) >> 1 Unsigned Verify

R_HEX_GPREL16_2 11 Word32_GP (S + A - GP) >> 2 Unsigned Verify

R_HEX_GPREL16_3 12 Word32_GP (S + A - GP) >> 3 Unsigned Verify

R_HEX_HL16 13 Word32_HL (S + A) >> 16 and 
(S + A)

Unsigned Truncate

R_HEX_B13_PCREL 14 Word32_B13 (S + A - P) >> 2 Signed Verify

R_HEX_B9_PCREL 15 Word32_B9 (S + A - P) >> 2 Signed Verify

80-N2040-23 Rev. K 29

Qualcomm Hexagon Application Binary Interface User Guide Object files

R_HEX_B32_PCREL_X 16 Word32_X26 (S + A - P) >> 6 Signed Truncate

R_HEX_32_6_X 17 Word32_X26 (S + A) >> 6 Unsigned Verify

R_HEX_B22_PCREL_X 18 Word32_B22 (S + A - P) & 0x3f Signed Verify

R_HEX_B15_PCREL_X 19 Word32_B15 (S + A - P) & 0x3f Signed Verify

R_HEX_B13_PCREL_X 20 Word32_B13 (S + A - P) & 0x3f Signed Verify

R_HEX_B9_PCREL_X 21 Word32_B9 (S + A - P) & 0x3f Signed Verify

R_HEX_B7_PCREL_X 22 Word32_B7 (S + A - P) & 0x3f Signed Verify

R_HEX_16_X 23 Word32_U6 (S + A) Unsigned Truncate

R_HEX_12_X 24 Word32_R6 (S + A) Unsigned Truncate

R_HEX_11_X 25 Word32_U6 (S + A) Unsigned Truncate

R_HEX_10_X 26 Word32_U6 (S + A) Unsigned Truncate

R_HEX_9_X 27 Word32_U6 (S + A) Unsigned Truncate

R_HEX_8_X 28 Word32_U6 (S + A) Unsigned Truncate

R_HEX_7_X 29 Word32_U6 (S + A) Unsigned Truncate

R_HEX_6_X 30 Word32_U6 (S + A) Unsigned Truncate

R_HEX_32_PCREL 31 Word32 (S + A - P) Signed Verify

R_HEX_COPY 32 Word32 (see below)

R_HEX_GLOB_DAT 33 Word32 (S + A) (see below) Unsigned Truncate

R_HEX_JMP_SLOT 34 Word32 (S + A) (see below) Unsigned Truncate

R_HEX_RELATIVE 35 Word32 (B + A) (see below) Unsigned Truncate

R_HEX_PLT_B22_PCREL 36 Word32_B22 (L + A - P) >> 2 Signed Verify

R_HEX_GOTREL_LO16 37 Word32_LO (S + A - GOT) Signed Truncate

R_HEX_GOTREL_HI16 38 Word32_LO (S + A - GOT) >> 16 Signed Truncate

R_HEX_GOTREL_32 39 Word32 (S + A - GOT) Signed Truncate

R_HEX_GOT_LO16 40 Word32_LO (G) Signed Truncate

R_HEX_GOT_HI16 41 Word32_LO (G) >> 16 Signed Truncate

R_HEX_GOT_32 42 Word32 (G) Signed Truncate

R_HEX_GOT_16 43 Word32_U16 (G) Signed Verify

R_HEX_DTPMOD_32 44 Word32

R_HEX_DTPREL_LO16 45 Word32_LO (S + A - T) Signed Truncate

R_HEX_DTPREL_HI16 46 Word32_LO (S + A - T) >> 16 Signed Truncate

R_HEX_DTPREL_32 47 Word32 (S + A - T) Signed Truncate

R_HEX_DTPREL_16 48 Word32_U16 (S + A - T) Signed Verify

R_HEX_GD_PLT_B22_PCREL 49 Word32_B22 (L + A - P) >> 2 Signed Verify

R_HEX_GD_GOT_LO16 50 Word32_LO (G) Signed Truncate

R_HEX_GD_GOT_HI16 51 Word32_LO (G) >> 16 Signed Truncate

Table 12-5 Relocation types (cont.)

Name Value Field Relocation Result Action

80-N2040-23 Rev. K 30

Qualcomm Hexagon Application Binary Interface User Guide Object files

R_HEX_GD_GOT_32 52 Word32 (G) Signed Truncate

R_HEX_GD_GOT_16 53 Word32_U16 (G) Signed Verify

R_HEX_IE_LO16 54 Word32_LO (G + GOT) Signed Truncate

R_HEX_IE_HI16 55 Word32_LO (G + GOT) >> 16 Signed Truncate

R_HEX_IE_32 56 Word32 (G + GOT) Signed Truncate

R_HEX_IE_GOT_LO16 57 Word32_LO (G) Signed Truncate

R_HEX_IE_GOT_HI16 58 Word32_LO (G) >> 16 Signed Truncate

R_HEX_IE_GOT_32 59 Word32 (G) Signed Truncate

R_HEX_IE_GOT_16 60 Word32_U16 (G) Signed Verify

R_HEX_TPREL_LO16 61 Word32_LO (TLS - S - A) Signed Truncate

R_HEX_TPREL_HI16 62 Word32_LO (TLS - S - A) >> 16 Signed Truncate

R_HEX_TPREL_32 63 Word32 (TLS - S - A) Signed Truncate

R_HEX_TPREL_16 64 Word32_U16 (TLS - S - A) Signed Verify

R_HEX_6_PCREL_X 65 Word32_U6 (S + A - P) Unsigned Truncate

R_HEX_GOTREL_32_6_X 66 Word32_X26 (S + A - GOT) >> 6 Signed Truncate

R_HEX_GOTREL_16_X 67 Word32_U6 (S + A - GOT) Unsigned Truncate

R_HEX_GOTREL_11_X 68 Word32_U6 (S + A - GOT) Unsigned Truncate

R_HEX_GOT_32_6_X 69 Word32_X26 (G) >> 6 Signed Truncate

R_HEX_GOT_16_X 70 Word32_U6 (G) Signed Truncate

R_HEX_GOT_11_X 71 Word32_U6 (G) Unsigned Truncate

R_HEX_DTPREL_32_6_X 72 Word32_X26 (S + A - T) >> 6 Signed Truncate

R_HEX_DTPREL_16_X 73 Word32_U6 (S + A - T) Unsigned Truncate

R_HEX_DTPREL_11_X 74 Word32_U6 (S + A - T) Unsigned Truncate

R_HEX_GD_GOT_32_6_X 75 Word32_X26 (G) >> 6 Signed Truncate

R_HEX_GD_GOT_16_X 76 Word32_U6 (G) Unsigned Truncate

R_HEX_GD_GOT_11_X 77 Word32_U6 (G) Unsigned Truncate

R_HEX_IE_32_6_X 78 Word32_X26 (G + GOT) >> 6 Signed Truncate

R_HEX_IE_16_X 79 Word32_U6 (G + GOT) Unsigned Truncate

R_HEX_IE_GOT_32_6_X 80 Word32_X26 (G) >> 6 Signed Truncate

R_HEX_IE_GOT_16_X 81 Word32_U6 (G) Unsigned Truncate

R_HEX_IE_GOT_11_X 82 Word32_U6 (G) Unsigned Truncate

R_HEX_TPREL_32_6_X 83 Word32_X26 (TLS - S - A) >> 6 Signed Truncate

R_HEX_TPREL_16_X 84 Word32_U6 (TLS - S - A) Unsigned Truncate

R_HEX_TPREL_11_X 85 Word32_U6 (TLS - S - A) Unsigned Truncate

R_HEX_LD_PLT_B22_PCREL 86 Word32_B22 (L + A - P) >> 2 Signed Verify

R_HEX_LD_GOT_LO16 87 Word32_LO (G) Signed Truncate

Table 12-5 Relocation types (cont.)

Name Value Field Relocation Result Action

80-N2040-23 Rev. K 31

Qualcomm Hexagon Application Binary Interface User Guide Object files

NOTE: If a relocation formula contains a reference to either G or GOT, an entry for the indicated
symbol is implicitly created in the global offset table (GOT).

NOTE: If a relocation formula contains a reference to L, an entry for the indicated symbol is
implicitly created in the procedure linkage table (PLT).

R_HEX_LD_GOT_HI16 88 Word32_LO (G) >> 16 Signed Truncate

R_HEX_LD_GOT_32 89 Word32 (G) Signed Truncate

R_HEX_LD_GOT_16 90 Word32_R16 (G) Signed Verify

R_HEX_LD_GOT_32_6_X 91 Word32_X26 (G) >> 6 Signed Truncate

R_HEX_LD_GOT_16_X 92 Word32_U6 (G) Unsigned Truncate

R_HEX_LD_GOT_11_X 93 Word32_U6 (G) Unsigned Truncate

R_HEX_23_REG 94 Word32_B21 (S + A - MB) >> 2 Unsigned Verify

R_HEX_GD_PLT_B22_PCREL_X 95 Word32_B22 (S + A - P) & 0x3f Signed Truncate

R_HEX_GD_PLT_B32_PCREL_X 96 Word32_X26 (S + A - P) >> 6 Signed Truncate

R_HEX_LD_PLT_B22_PCREL_X 97 Word32_B22 (S + A - P) & 0x3f Signed Truncate

R_HEX_LD_PLT_B32_PCREL_X 98 Word32_X26 (S + A - P) >> 6 Signed Truncate

R_HEX_27_REG 99 Word32_M25 (S + A - MB) >> 2 Unsigned Verify

Table 12-5 Relocation types (cont.)

Name Value Field Relocation Result Action

80-N2040-23 Rev. K 32

Qualcomm Hexagon Application Binary Interface User Guide Object files

12.4.4 Special relocation types
Four of the relocation types listed in Table 12-5 have special semantics – they are the only types
the loader supports, while generating an error for the other relocation types.

12.5 Linker-generated symbols
The following special symbols are generated by the linker and affect runtime.

Table 12-6 Special relocation types

Name Description
R_HEX_COPY Dynamic linking support – The offset refers to a location in a writable segment,

and the symbol table index specifies a symbol that exists in both the current
object file and a shared object.
During execution, the dynamic linker copies the field associated with the shared
object's symbol into the location in the current object specified by the offset.

R_HEX_GLOB_DAT Similar to relocation type R_HEX_32, except that it sets a GOT entry to the
address of the specified symbol.

R_HEX_JMP_SLOT Dynamic linking support – The offset refers to the location of a GOT entry, which
the dynamic linker modifies with the address of the specified symbol.

R_HEX_RELATIVE Dynamic linking support – The offset refers to a location in a shared object that
contains a value representing a relative address.
The loader computes the corresponding virtual address by adding the relative
address to the virtual address that the shared object was loaded at.
NOTE: The symbol table index must be set to 0.

Table 12-7 Linker-generated symbols

Name Description
_SDA_BASE_ Denotes the value of the GP register and the beginning of the small data area.

_TLS_START_ Denotes the beginning of the TLS template area in the current image.

_TLS_DATA_END_ Denotes the end of the initialized TLS data within the TLS template area of the
current image.

_TLS_END_ Denotes the end of the TLS template area of the current image.

__end Denotes one byte past the highest virtual address occupied by the present
image.

80-N2040-23 Rev. K 33

13 Program headers

When a loadable segment is loaded into memory, the contents of element p_flags specify the
corresponding segment permissions.

80-N2040-23 Rev. K 34

14 Dynamic linking

Dynamic linking involves loading objects into an application program (and linking them) at
runtime rather than compile time.

The mechanics of shared object loading are specific to the target operating system. Hexagon object
files use the same data structures for dynamic linking that are used in the System V ABI.

Shared objects are often intended to be referenced by more than one client object, which requires
that their code be executable in a reentrant manner. Reentrant objects are commonly implemented
by maintaining separate instances of the object data section for each reference to the shared object.

The mechanism used for creating multiple data section instances is implementation-defined. Here
are two examples of how the data sections can be implemented:

1. The object loader marks all pages for a data section as read-only, and relies on the virtual
memory manager to create write-able copies of the pages, which are written to privately from
the calling-process context (a policy known as copy-on-write).

2. The object loader creates a new instance of the shared object for each reference.

80-N2040-23 Rev. K 35

Qualcomm Hexagon Application Binary Interface User Guide Dynamic linking

14.1 Dynamic section
In addition to supporting the standard ELF dynamic array tags, Hexagon object files can also
include processor-specific dynamic array tags to support dynamic linking.

Table 14-1 lists the processor-specific dynamic array tags (along with the standard ELF dynamic
array tag DT_PLTGOT):

 Name – Specifies the name of the tag.

 Value – Specifies the numeric identifier of the tag.

 d_un – Specifies whether the tag represents an integer or program virtual address. (d_un is
the name of a union that is used to store elements in a dynamic section.)

 Executable – Specifies whether or not the dynamic linking array for an executable object
file must contain a tag entry of the specified type. Optional indicates that an entry can
appear in the array, but is not required.

 Shared object – Specifies whether or not the dynamic linking array for a shared object file
must contain a tag entry of the specified type.

These tags have the following descriptions:

 DT_PLTGOT – Image offset of the GOT (Section 14.2).

 DT_HEXAGON_SYMSZ – Size (in bytes) of the symbol table pointed by DT_SYMTAB. This
value is equivalent to the value of DT_SYMENT multiplied by the value of field nchain in
the hash table pointed by DT_HASH.

 DT_HEXAGON_VER – Version of interface with dynamic linker (Section 14.3). Currently, it
can be set to the integer value 2 or 3. For the object to be compatible with the Hexagon
ABI, it must be set to 3. The default is 2.

 DT_HEXAGON_PLT – Image offset of the PLT (Section 14.3).

Table 14-1 Dynamic array tags

Name Value d_un Executable Shared object
DT_PLTGOT 0x00000003 d_ptr Optional Optional

DT_HEXAGON_SYMSZ 0x70000000 d_val Optional Optional

DT_HEXAGON_VER 0x70000001 d_val Mandatory Mandatory

DT_HEXAGON_PLT 0x70000002 d_val Optional Optional

80-N2040-23 Rev. K 36

Qualcomm Hexagon Application Binary Interface User Guide Dynamic linking

14.2 Global offset table
The global offset table (GOT) is an array of absolute addresses which enables an object to use
position-independent code.

At load-time, the relocations related to GOT-relative dynamic symbols are resolved, and the GOT
is populated with their absolute addresses.

The zero’th GOT entry (index = 0) is reserved for holding the address of the dynamic structure,
which is referenced through the symbol _DYNAMIC. The three subsequent entries are reserved for
use by the dynamic linker.

The GOT is referenced through the symbol _GLOBAL_OFFSET_TABLE_. It can reside anywhere in
the section, .got, and it can accept positive and negative indexes given its declaration as:

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_ [];

NOTE: Any change to the format of the GOT will be reflected in DT_HEXAGON_VER
(Section 14.1).

80-N2040-23 Rev. K 37

Qualcomm Hexagon Application Binary Interface User Guide Dynamic linking

14.3 Procedure linkage table
The procedure linkage table (PLT) enables execution transfers from one object to another, with the
resolution of function symbols performed at runtime.

Each object that references external functions has a PLT, which is composed of an array of stubs
for each of the external functions. The dynamic linker determines the absolute addresses of the
destinations and stores them in the GOT, from which they are loaded by the stub code in the PLT
entry.

A relocation table is associated with the PLT. The DT_JMPREL tag in the _DYNAMIC array
indicates the location of the first relocation entry. The relocation table entries, after any reserved
entry, match the PLT entries in a one-to-one correspondence – for example, relocation table entry
16 applies to the 16th PLT entry after the reserved PLT entries.

The relocation type associated with each non-reserved PLT entry must be R_HEX_JMP_SLOT. The
relocation offset must specify the address of a GOT entry containing the address of the function,
and the symbol table index must reference the appropriate symbol.

The resolution of external function symbols is beyond the scope of this specification; however, the
PLT is designed to allow on-demand resolution of such symbols. In other words, the external
function symbols need not be resolved before execution begins: each symbol is resolved only
when it is called (a policy known as lazy binding, which avoids the overhead of resolving and
relocating symbols that are never called).

The interface between the PLT and dynamic linker is performed via registers R14 and R15, which
respectively contain the PLT relocation table entry index and the object identification.
Additionally, R28 is available for use as a scratch register by the PLT stub code.

The details of the PLT are implementation-defined. For example, the following code example
presents a possible PLT design, with the first four entries reserved for interfacing with the dynamic
linker to perform lazy binding.

.PLT0: // entry reserved for dyn linker
r15 = pc // address of .PLT0
r28.h = #hi (.PLT0@GOT) // offset of .PLT0 from GOT
r28.l = #lo (.PLT0@GOT)
r28 = sub (r15, r28) // address of GOT
r15 = memw (r28 + #8) // object ID at GOT [2]
r14 = sub (r14, r28) // offset of @GOT from GOT

.PLT1: // entry reserved for dyn linker
r14 = add (r14, #-16) // subtract reserved PLT entries
r14 = asr (r14, #2) // index of PLT relocation
r28 = memw (r28 + #4) // dynamic linker at GOT [1]
jumpr r28 // call dynamic linker
nop
nop

.PLT2: // entry reserved for dyn linker

...

.PLT3: // entry reserved for dyn linker

...

80-N2040-23 Rev. K 38

Qualcomm Hexagon Application Binary Interface User Guide Dynamic linking

.PLT4: // entry for name1
r15 = pc // address of .PLT4
r14.h = #hi (name1’s GOT - .PLT4) // offset of name1 GOT from entry
r14.l = #lo (name1’s GOT - .PLT4)
r14 = add (r15, r14) // address of name1 GOT
r28 = memw (r14) // contents of name1 GOT
jumpr r28 // call it

.PLT5: // entry for name2
r15 = pc
r14.h = #hi (name2’s GOT - .PLT5)
r14.l = #lo (name2’s GOT - .PLT5)
r14 = add (r15, r14)
r28 = memw (r14)
jumpr r28

.PLT6:

...

NOTE: For details on the @GOT suffix see Section 16.2.

The following steps are assumed in resolving external function symbols. This procedure uses 24-
byte long PLT entries.

1. The program loader sets the second entry of the GOT to the address of the dynamic linker (in
order to resolve external function symbols), and the third entry of the GOT to some identifying
information unique to the object.

2. The linker initializes the first few PLT entries reserved to it with code that will marshal
arguments to the dynamic linker.

In this example, the code at the beginning of the first PLT entry finds the offset from it to the
GOT (as set by the linker). The offset is then used to calculate the absolute address of the
GOT. Register R14 is set to index into the PLT relocation table for function name1, and R15 is
set to the object ID. The address of the dynamic linker is loaded from a GOT entry and called.

3. When the function name1 is called, execution is transferred to its assigned PLT entry (in this
example, .PLT4).

4. The PLT entry contains a stub that sets R15 to its address and then calculates the address of the
GOT entry for the symbol, name1.

Control is then transferred indirectly to the contents of this GOT entry, which initially contains
the address of the first PLT entry (.PLT0).

5. The preceding PLT code example is executed, starting at label .PLT0.

With the PLT entry index for name1 and its corresponding GOT entry offset, the dynamic
linker can find the associated relocation entry for the symbol, whose offset points to the GOT
entry for the symbol, and whose symbol index points to the function symbol (name1 in this
example).

80-N2040-23 Rev. K 39

Qualcomm Hexagon Application Binary Interface User Guide Dynamic linking

6. When the dynamic linker resolves the symbol name1, it modifies the GOT entry associated
with its PLT entry with its actual address, and then transfers control to it.

Subsequent calls to name1 land immediately at its address (after a stop at its PLT entry), but
without calling the dynamic linker again.

NOTE: Any change to the interface with the dynamic linker will be reflected in DT_HEXAGON_VER
(Section 14.1).

80-N2040-23 Rev. K 40

15 Thread-local storage

The Hexagon development tools support thread-local storage (TLS), which is data that is allocated
at runtime and accessible only by the thread that allocates it.

15.1 Thread-local storage section
Both initialized and uninitialized TLS data can be specified. At runtime, when a thread is created
the initialized data must be provided. This data is provided in the sections identified with SHF_TLS
flag:

 .tdata – Initialized TLS data

 .tbss – Uninitialized data defined as COMMON symbols

These combined sections form the TLS template that is used when a thread is created.

Symbols associated with the TLS data are assigned type STT_TLS. Their offset is relative to the
beginning of the TLS template – this offset is used in the st_value field of defined TLS symbols.

The TLS template resides in a segment marked with PT_TLS.

15.2 Runtime allocation
The TLS area is allocated in the following situations:

 Whenever a thread is created (including the main executable thread)

 Whenever the TLS area of a shared object is referenced for the first time after an
executable was started

When creating the TLS area for a thread (including the main executable thread), the runtime linker
combines the TLS templates for all loaded shared objects – including the executable and shared
libraries – into a single TLS template. This single TLS template is then used to initialize the TLS
area allocated for each new thread.

80-N2040-23 Rev. K 41

Qualcomm Hexagon Application Binary Interface User Guide Thread-local storage

15.3 Load-time allocation
When a shared object is loaded after process startup, and the object contains a TLS template, a
TLS area might be allocated when the TLS data is first referenced.

When a shared object is unloaded, the memory associated with its TLS template is freed
(depending on the access method used – see Section 15.5 for details).

15.4 Interface
The TLS area is accessed at the processor level through the special register UGP (Section 10.1).
This register is set to the address one location above the TLS area, which grows downwards from
UGP.

Depending on the TLS access method in use (Section 15.5), different methods are used to locate
the TLS area.

The following (implementation-defined) function is assumed to be available:

typedef struct
{
 size_t ti_moduleid;
 ptrdiff_t ti_tlsoffset;
} TLS_index;

extern void *__tls_get_addr (TLS_index *);

This function returns a pointer to the address of the specified TLS data.

80-N2040-23 Rev. K 42

Qualcomm Hexagon Application Binary Interface User Guide Thread-local storage

15.5 Thread-local storage access
The location of specific data items in an object’s TLS area is known at link time, and this
information can be used to directly access the data. However, shared objects containing a TLS
template can be loaded after process startup. In this case, more general methods are required for an
executable object to access its TLS data.

The following general methods can be used to access TLS data – they are listed here in order from
the most general to the most restrictive (with the most restrictive methods also being the most
efficient):

 General dynamic (GD)

 Local dynamic (LD)

 Initial executable (IE)

 Local executable (LE)

NOTE: Subject to the specified constraints, any of these methods can be used in a given shared
object – the choice depends on which method is the most convenient to use in a specific
instance.

15.5.1 General dynamic (GD)
In the GD method, TLS data can be referenced from either a shared object or an executable object.

To obtain the address of a variable in the TLS area, the code must call the function
__tls_get_addr () with the address of a TLS_index structure (Section 15.4).

NOTE: In a shared object, the TLS template can be loaded only after process startup. Otherwise,
the (standard ELF) dynamic tag DT_FLAGS is set to the value DF_STATIC_TLS, which
prevents the TLS data from being loaded after process startup.

15.5.2 Local dynamic (LD)
In the LD method, if a shared object contains TLS data that is protected or has local visibility, the
location of the data in the TLS template is known at link time, and this location information can be
used directly.

To obtain the address of a variable in the TLS area, the code must first obtain the TLS base address
by calling the function __tls_get_addr () with the address of a TLS_index structure
(Section 15.4) that has a ti_tlsoffset member with a value of zero. The TLS variables can be
accessed using the LD method through offsets from the obtained base address.

NOTE: In a shared object, the TLS template can be loaded only after process startup. Otherwise,
the (standard ELF) dynamic tag DT_FLAGS is set to the value DF_STATIC_TLS, which
prevents the TLS data from being loaded after process startup.

80-N2040-23 Rev. K 43

Qualcomm Hexagon Application Binary Interface User Guide Thread-local storage

15.5.3 Initial executable (IE)
In the IE method, an object can access TLS data only if it is part of the initial TLS template
established at link time. When a shared object is loaded after process startup, its TLS data cannot
be accessed using this method.

To obtain the address of a variable in the TLS area, the dynamic linker creates a GOT entry to store
the variable’s offset in the initial TLS area.

NOTE: When a shared object is loaded after process startup, its TLS data is not part of the initial
TLS template. Therefore, if a shared object tries to use this method to access its TLS data,
the access must be rejected.

15.5.4 Local executable (LE)
In the LE method, an object can access the TLS data of executable objects only.

To obtain the address of a variable in the initial TLS area, simply use a static offset from the top of
the initial TLS area (since the variable location is known at link time).

NOTE: If an object tries to use this method to access the TLS data of a non-executable object, the
access must be rejected.

80-N2040-23 Rev. K 44

16 Coding examples

This chapter presents examples showing how the following operations can be coded in Hexagon
assembly code:

 Function prologs and epilogs

 Function calls (direct and indirect)

 Branches (direct and indirect)

 Data access

 Thread-local storage

Most of the examples include separate coding solutions for two cases:

 Absolute code (which must be loaded at a specific address)

 Position-independent code (which can be loaded at an arbitrary address)

Position-independent code is used in shared objects, which typically execute in the context of
another object. Pay attention to the differences between the coding solutions for absolute and
position-independent code.

NOTE: The examples are not intended as definitive coding solutions – they merely demonstrate
how certain basic operations can be implemented. Optimal coding solutions can be
derived from the examples.

16.1 Register use
The examples in this chapter use the following register conventions:

 The absolute address of the GOT (Section 14.2) is stored in R24

 The absolute address of the application TLS area (Section 15.5) is stored in R25

Both R24 and R25 are initialized in the function prolog (Section 16.4).

NOTE: These register choices are arbitrary, and do not imply any standard coding convention for
Hexagon assembly code.

80-N2040-23 Rev. K 45

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.2 Assembler symbols

Table 16-1 Special assembler symbols used in examples

Name Description
_GLOBAL_OFFSET_TABLE_ Reference symbol in the global offset table (Section 14.2).

Implicit address of the zero’th (index = 0) GOT entry.

name@PCREL Offset to position of the symbol name from the current location.

name@GOT Offset of GOT entry for the symbol name from _GLOBAL_OFFSET_TABLE_.
Instructs linker to create GOT entry for the symbol name.

name@GOTREL Offset to location of the symbol name from _GLOBAL_OFFSET_TABLE_.

name@PLT Offset to PLT entry for the symbol name from the current code location.
Instructs linker to create a PLT entry for the symbol name.

name@GDPLT Offset to PLT entry for the function that returns the address of a TLS symbol name
from the current code location, using the GD method (Section 15.5.1).
This function takes the address of a TLS_index structure as its argument
(Section 15.4).

name@GDGOT Offset of first GOT entry for the TLS_index structure for the symbol name from
_GLOBAL_OFFSET_TABLE_, using the GD method (Section 15.5.1).
Instructs linker to create GOT entries for TLS_index structure members
ti_moduleid and ti_tlsoffset.

name@LDPLT Offset to PLT entry for the function that returns the address of a TLS symbol name
from the current code location, using the LD method (Section 15.5.2).
This function takes the address of a TLS_index structure as its argument
(Section 15.4).

name@LDGOT Offset of first GOT entry for the TLS_index structure for the symbol name from
_GLOBAL_OFFSET_TABLE_, using the LD method (Section 15.5.2).
Instructs linker to create GOT entries for TLS_index structure members
ti_moduleid and ti_tlsoffset, with the latter zeroed.

name@DTPREL Offset to position of the symbol name from base of TLS template, using the LD
method (Section 15.5.2).

name@IE Address of the GOT entry for the offset into the TLS area for the symbol name,
using the IE method (Section 15.5.2).
Instructs linker to create a GOT entry for the offset into the TLS area for the symbol
name.

name@IEGOT Offset of the GOT entry for the offset into the TLS area for the symbol name from
_GLOBAL_OFFSET_TABLE_, using the IE method (Section 15.5.3).
Instructs linker to create a GOT entry for the offset into the TLS area for the symbol
name.

name@TPREL Offset to position of the symbol name from base of the TLS area, using the LE
method (Section 15.5.4).

80-N2040-23 Rev. K 46

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.3 Addressing constraints
The Hexagon processor architecture has certain addressing constraints which affect how data
accesses are coded in Hexagon assembly language. The constraints depend on the instruction and
data size:

 Some branching instructions use a 7- to 22-bit operand as a signed offset from the current
program-counter (PC).

 When accessing data in the small data area (using GP-relative addressing), a 16-bit value is
used as an unsigned offset from the GP register. This value is shifted left before it is added to
the GP register – the shift amount is determined by the size of the accessed data:

 0 for bytes

 1 for half-words

 2 for words

 3 for double-words

This limits the range that GP-relative addressing can access: 64K for bytes, 128K for half-
words, 256K for words and 512K for double-words.

 When indexing an entry in the GOT (Section 14.2), instead of using a larger and slower 32-bit
index, a program can restrict itself to just 16 bits for indexing a GOT entry. If the GOT size
grows larger than 64KB, then 32-bit indexes must be used.

80-N2040-23 Rev. K 47

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.4 Function prologs and epilogs
Function prologs and epilogs are standard code sections that appear at the beginning and end of a
function body. Their purpose is to manage the use of certain Hexagon processor registers within
the function (Section 16.1).

This section presents examples showing how function prologs and epilogs can be coded in
Hexagon assembly language.

16.4.1 Absolute
If a function calls another function, it is defined as a non-leaf function. In this case, in order to save
the link register, a stack frame must be allocated even if no local variables are allocated from the
stack.

If a function does not call another function, no stack frame is necessary (though it might be useful
for traversing previous stack frames during debugging).

When using the GD or LD method for accessing TLS (Section 15.5), the absolute address of the
GOT (Section 14.2) can be stored in a register for convenience.

Table 16-2 Function prolog and epilog (absolute)

C Hexagon assembly language
void foo (void) foo:

{ allocframe (#...)

... ...

} dealloc_return

Table 16-3 Function prolog and epilog (absolute – GD or LD access)

C Hexagon assembly language
void foo () foo:

{ allocframe(#8)
memw(r29+#4) = r24
r24 = add(pc,##_GLOBAL_OFFSET_TABLE_@PCREL)

... ...

} dealloc_return

80-N2040-23 Rev. K 48

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

When using the IE or LE method for accessing TLS, the UGP register (Section 10.1) can be copied
to a general-purpose register for convenience.

Table 16-4 Function prolog and epilog (absolute – IE or LE access)

C Hexagon assembly language
void foo (void) foo:

{ allocframe (#...)
r25 = ugp

... ...

} dealloc_return

80-N2040-23 Rev. K 49

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.5 Direct function call
This section presents examples showing how direct function calls can be coded in Hexagon
assembly language.

16.5.1 Absolute
Direct function calls are performed with the CALL instruction, which uses the PC-relative
addressing mode to specify the function address.

16.5.2 Position-independent
In external function calls, the function address is not known at build time. In this case the address
must be stored in a specific data structure at runtime (Chapter 14).

Assuming that the relevant data structures have been initialized, external functions are normally
called through stubs contained in the procedure linkage table.

NOTE: Local function calls use the same code sequence for both absolute and position-
independent code.

Table 16-5 Direct function call (absolute)

C Hexagon assembly language Relocation
extern void foo (void *); .extern foo

foo (NULL); r0 = #0
call foo R_HEX_B22_PCREL

Table 16-6 Direct function call (position-independent)

C Hexagon assembly language Relocation
extern void foo (void *); .extern foo

foo (NULL); r0 = #0

call foo@PLT a

a The @PLT suffix is optional in this symbol reference.

R_HEX_PLT_B22_PCREL

80-N2040-23 Rev. K 50

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.6 Indirect function call
This section presents examples showing how indirect function calls can be coded in Hexagon
assembly language.

16.6.1 Absolute
Indirect function calls are performed with the CALLR instruction.

If the calling function does not have access to a small data area (Section 10.1), the function
addresses must be loaded from regular memory, which requires a less-efficient code sequence.

Table 16-7 Indirect function call (absolute)

C Hexagon assembly language Relocation
extern void foo (void *);
static void bar (void);
auto void (*fun) (void *);

.extern foo

.local bar

fun = foo; r1 = ##foo R_HEX_32_6_X + R_HEX_16_X

memw(#fun) = r1 R_HEX_GPREL_2

fun (bar); r0 = ##bar R_HEX_32_6_X + R_HEX_16_X

callr r1

Table 16-8 Indirect function call (absolute – no small data)

C Hexagon assembly language Relocation
extern void foo (void *);
static void bar (void);
auto void (*fun) (void *);

.extern foo

.local bar

fun = foo; r0 = ##fun R_HEX_32_6_X | R_HEX_16_X

r1 = ##foo R_HEX_32_6_X | R_HEX_16_X

memw(r0+#0) = r1

fun (bar); r0 = ##fun R_HEX_32_6_X | R_HEX_16_X

r1 = memw(r0+#0)

r0 = ##bar R_HEX_32_6_X | R_HEX_16_X

callr r1

80-N2040-23 Rev. K 51

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.6.2 Position-independent
In position-independent code, indirect function calls are also performed with the CALLR
instruction. However, it is necessary to calculate at runtime the absolute address of the function.

If the GOT (Section 14.2) is known to be smaller than 64 KB, then a missing small data area
requires fewer loads from memory because the callee function address value fits in 16 bits.

NOTE: The absolute address of the GOT is assumed to be stored in R24 (Section 16.1).

NOTE: Because the address of the function is referenced as a data object, it is resolved along with
the other data object when an object file is loaded, effectively bypassing the lazy-binding
mechanism (Section 14.3).

Table 16-9 Indirect function call (position-independent)

C Hexagon assembly language Relocation
extern void foo (void *);
static void bar (void);
auto void (*fun) (void *);

.extern foo

.local bar:

fun = foo; r20 = memw (r24 + ##foo@GOT) a R_HEX_GOT_32_6_X b

R_HEX_GOT_11_X

fun (bar); r0 = add (pc, ##bar@PCREL) R_HEX_6_PCREL_X

callr r20
a If GOT is known to be smaller than 64 KB, the immediate extension can be omitted with the consequent changes to the

appropriate relocation type.
b Relocation created for immediate constant extender.

Table 16-10 Indirect function call (position-independent, no small data)

C Hexagon assembly language Relocation
extern void foo (void *);
static void bar (void);
auto void (*fun) (void *);

.extern foo

.local bar

fun = foo; r24 =
add(pc,##_GLOBAL_OFFSET_TABLE_@PCREL)

R_HEX_GOT_16

r1 = add(r24, #foo@GOT)

r1 = memw(r1)

fun (bar); r0 = add(pc,##bar@PCREL) R_HEX_6_PCREL_X

callr r1

80-N2040-23 Rev. K 52

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.7 Direct branch
This section presents an example showing how direct branches can be coded in Hexagon assembly
language.

16.7.1 Absolute and position-independent
Direct branches are performed with the JUMP instruction, which uses the PC-relative addressing
mode to specify the branch address.

Table 16-11 Direct branch (absolute and position-independent)

C Hexagon assembly language Relocation
bar: .Lbar:

goto bar; jump .lbar R_HEX_B22_PCREL

80-N2040-23 Rev. K 53

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.8 Indirect branch
This section presents examples showing how indirect branches can be coded in Hexagon assembly
language.

16.8.1 Absolute
Indirect branches are performed with the JUMPR instruction. For instance, the following example
uses an indirect branch to implement a jump table.

r22 = const32 (#.Lbar)
r23 = addasl (r22, r21, #2)
r23 = memw (r23)
jumpr r23
...
.L1:
...
.L2:
...

.section .rodata, “a”, @progbits

.Lbar:
 .word .L1
 .word .L2
...

If the code performing the branch does not have access to a small data area (Section 10.1), the
branch address must be loaded from regular memory, which requires a less-efficient code
sequence.

r22 = ##.Lbar
r23 = addasl (r22, r21, #2)
r23 = memw (r23)
jumpr r23
...
.L1:
...
.L2:
...

.section .rodata, “a”, @progbits

.Lbar:
 .word .L1
 .word .L2
...

80-N2040-23 Rev. K 54

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.8.2 Position-independent
In position-independent code, indirect branches are also performed with the JUMPR instruction.
However, it is necessary to calculate at runtime the absolute address of the branch destination.

For instance, the following example loads the branch address from regular memory.

r22 = add (pc, ##.Lbar@PCREL)
r23 = addasl (r22, r21, #2)
r23 = memw (r23)
r23 = add (r23, r24)
jumpr r23
...
.L1:
...
.L2:
...

.section .data, “aw”, @progbits

.Lbar:
 .word .L1
 .word .L2
...

80-N2040-23 Rev. K 55

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.9 Data access
This section presents examples showing how data accesses can be coded in Hexagon assembly
language.

16.9.1 Absolute
Data accesses are performed using the Hexagon load and store instructions.

If the code performing the data access does not have access to a small data area (Section 10.1), the
data address must be loaded from regular memory, which requires a less-efficient code sequence.

Table 16-12 Data access (absolute)

C Hexagon assembly language Relocation
extern int src;
static int dst;
auto int *ptr;

.extern src

.lcomm dst, 4

ptr = &dst; r23 = const32 (#dst) R_HEX_GPREL16_2 +

R_HEX_32 a

a Relocation created in small data area.

*ptr = src; r22 = memw (#src) R_HEX_GPREL16_2

memw (r23) = r22

Table 16-13 Data access (absolute – no small data)

C Hexagon assembly language Relocation
extern int src;
static int dst;
auto int *ptr;

.extern src

.lcomm dst, 4

ptr = &dst; r23 = ##dst R_HEX_HI16
R_HEX_LO16

*ptr = src; r21 = memw (##src) R_HEX_HI16
R_HEX_LO16

memw (r23) = r21

80-N2040-23 Rev. K 56

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.9.2 Position-independent
In position-independent code, data accesses are also performed with the Hexagon load and store
instructions. However, it is necessary to calculate at runtime the absolute address of the data.

Table 16-14 Data access (position-independent – no small data)

C Hexagon assembly language Relocation
extern int src;
static int dst;
auto int *ptr;

.extern src

.lcomm dst, 4

ptr = &dst; r24 = add(pc, ##_GLOBAL_OFFSET_TABLE_@PCREL) R_HEX_GOTREL_HI16
R_HEX_GOTREL_LO16

r1 = memw(r24 + ##ptr@GOT)

memw(r1+#0) = r0

*ptr = src; r1 = memw(r24 + ##src@GOT) R_HEX_GOT_HI16
R_HEX_GOT_LO16

r16 = memw(r1+#0)

r0 = add(pc, ##dst@PCREL)

memw(r0+#0) = r16

80-N2040-23 Rev. K 57

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.10 Thread-local storage
This section presents examples showing how data accesses to thread-local storage (TLS) can be
coded in version-specific Hexagon assembly language.

NOTE: The following examples for Hexagon V4 also apply to Hexagon V5x and V6x.

16.10.1 Absolute
This section presents code examples using the following TLS access methods:

 GD

 LD

 IE

 LE

GD TLS data accesses in V4 use 32-bit constant extenders to make the code sequence more
efficient.

Table 16-15 Thread-local storage (V4 absolute – GD access)

C Hexagon assembly language Relocation
extern __thread int src; .extern src

.type src, @tls_object

extern __thread int dst; .section .tbss, “awT”, @nobits
.global dst
.type dst, @tls_object
dst: .skip 4

auto int *ptr;

ptr = &dst;
.text

r0 = add (r24, ##dst@GDGOT) a R_HEX_GD_GOT_32_6_X b +
R_HEX_GD_GOT_16_X +

R_HEX_DTPMOD_32 c +

R_HEX_DTPREL_32 c

call dst@GDPLT
r23 = r0

R_HEX_GD_PLT_B22_PCREL

*ptr = src; r0 = add (r24, ##src@GDGOT) a R_HEX_GD_GOT_32_6_X b +
R_HEX_GD_GOT_16_X +

R_HEX_DTPMOD_32 c +

R_HEX_DTPREL_32 c

call src@GDPLT
r22 = memw (r0)
memw (r23) = r22

R_HEX_GD_PLT_B22_PCREL

a If GOT is known to be smaller than 64 KB, the immediate extension can be omitted with the consequent changes to the
appropriate relocation type.

b Relocation created for immediate constant extender.
c Relocation created in GOT.

80-N2040-23 Rev. K 58

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

LD TLS data accesses in the V4 processor use 32-bit constant extenders to make the code
sequence more efficient.

Table 16-16 Thread-local storage (V4 absolute – LD access)

C Hexagon assembly language Relocation
static __thread int src; .section .tbss, “awT”, @nobits

.type src, @tls_object
src: .skip 4

static __thread int dst; .type src, @tls_object
dst: .skip 4

auto int *ptr;

ptr = &dst;
.text

r0 = add (r24, ##dst@LDGOT) a R_HEX_LD_GOT_32_6_X b +
R_HEX_LD_GOT_16_X +

R_HEX_DTPMOD_32 c

call dst@LDPLT

r23 = add (r0, ##dst@DTPREL) d
R_HEX_LD_PLT_B22_PCREL

R_HEX_DTPREL_32_6_X b +
R_HEX_DTPREL_16_X

*ptr = src; r22 = add (r0, ##src@DTPREL) d

memw (r23) = r22

R_HEX_DTPREL_32_6_X b +
R_HEX_DTPREL_16_X

a If GOT is known to be smaller than 64 KB, the immediate extension can be omitted with the consequent changes to the
appropriate relocation type.

b Relocation created for immediate constant extender.
c Relocation created in GOT.
d If TLS template is known to be smaller than 64 KB, the immediate extension can be omitted with consequent changes to the

appropriate relocation type.

80-N2040-23 Rev. K 59

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

IE TLS data accesses in the V4 processor use indirect-with-register-offset addressing mode and
32-bit constant extenders to make the code sequence more efficient.

LE TLS data accesses in the V4 processor use 32-bit constant extenders to make the code sequence
more efficient.

Table 16-17 Thread-local storage (V4 absolute – IE access)

C Hexagon assembly language Relocation
extern __thread int src; .extern src

.type src, @tls_object

extern __thread int dst; .section .tbss, “awT”, @nobits
.global dst
.type dst, @tls_object
dst: .skip 4

auto int *ptr;

ptr = &dst;
.text
r23 = memw (##dst@IE) R_HEX_IE_32_6_X a +

R_HEX_IE_16_X +

R_HEX_TPREL_32 b

*ptr = src; r22 = memw (##src@IE)

r22 = memw (r25 + r22 << #1)
memw (r25 + r23 << #1) = r22

R_HEX_IE_32_6_X a+
R_HEX_IE_16_X +

R_HEX_TPREL_32 b

a Relocation created for immediate constant extender.
b Relocation created in GOT.

Table 16-18 Thread-local storage (V4 absolute – LE access)

C Hexagon assembly language Relocation
static __thread int src; .extern src

.type src, @tls_object

static __thread int dst; .section .tbss, “awT”, @nobits
.type dst, @tls_object
dst: .skip 4

auto int *ptr;

ptr = &dst;
.text

r23 = add (r25, ##dst@TPREL) a R_HEX_TPREL_32_6_X b +
R_HEX_TPREL_16_X

*ptr = src; r22 = memw (r25 + ##src@TPREL)

memw (r23) = r22

R_HEX_TPREL_32_6_X b +
R_HEX_TPREL_11_X

a If TLS area is known to be smaller than 64 KB, the immediate extension can be omitted with consequent changes to the
appropriate relocation type.

b Relocation created for immediate constant extender.

80-N2040-23 Rev. K 60

Qualcomm Hexagon Application Binary Interface User Guide Coding examples

16.10.2 Position-independent
This section presents code examples using the following TLS access methods:

 IE

Position-independent IE TLS data accesses in the V4 processor use indirect-with-register-offset
addressing mode and 32-bit constant extenders to make the code sequence more efficient.

Table 16-19 Thread-local storage (V4 position-independent – IE access)

C Hexagon assembly language Relocation
extern __thread int src; .extern src

.type src, @tls_object

extern __thread int dst; .section .tbss, “awT”, @nobits
.global dst
.type dst, @tls_object
dst: .skip 4

auto int *ptr;

ptr = &dst;
.text

r23 = memw (r24 + ##dst@IEGOT) a R_HEX_IE_GOT_32_6_X b +
R_HEX_IE_GOT_11_X +

R_HEX_TPREL_32 c

*ptr = src; r22 = memw (r24 + ##src@IEGOT) a

r22 = memw (r25 + r22 << #1)
memw (r25 + r23 << #1) = r22

R_HEX_IE_GOT_32_6_X b+
R_HEX_IE_GOT_11_X +

R_HEX_TPREL_32 b

a If GOT is known to be smaller than 64 KB, the immediate extension can be omitted with consequent changes to the appropriate
relocation type.

b Relocation created for immediate constant extender.
c Relocation created in GOT.

	1 Introduction
	1.1 Conventions
	1.2 Technical assistance

	2 ABI overview
	3 Data types
	3.1 Basic data types
	3.2 Memory alignment
	3.2.1 Static allocation
	3.2.2 Stack allocation
	3.2.3 Heap allocation

	4 Software stack
	4.1 Stack sections

	5 Parameter passing
	5.1 Fixed argument list function calls
	5.2 Variable argument list function calls
	5.3 Vector register usage for function calls

	6 Return values
	7 Register usage across calls
	7.1 Outgoing memory arguments

	8 C++ exception handling
	9 Operating system interface
	10 Process initialization
	10.1 Special registers
	10.2 General registers

	11 Program loading
	11.1 Position-independent objects

	12 Object files
	12.1 Compatibility
	12.2 ELF header
	12.3 Sections
	12.4 Relocation
	12.4.1 Relocation fields
	12.4.2 Relocation symbols
	12.4.3 Relocation types
	12.4.4 Special relocation types

	12.5 Linker-generated symbols

	13 Program headers
	14 Dynamic linking
	14.1 Dynamic section
	14.2 Global offset table
	14.3 Procedure linkage table

	15 Thread-local storage
	15.1 Thread-local storage section
	15.2 Runtime allocation
	15.3 Load-time allocation
	15.4 Interface
	15.5 Thread-local storage access
	15.5.1 General dynamic (GD)
	15.5.2 Local dynamic (LD)
	15.5.3 Initial executable (IE)
	15.5.4 Local executable (LE)

	16 Coding examples
	16.1 Register use
	16.2 Assembler symbols
	16.3 Addressing constraints
	16.4 Function prologs and epilogs
	16.4.1 Absolute

	16.5 Direct function call
	16.5.1 Absolute
	16.5.2 Position-independent

	16.6 Indirect function call
	16.6.1 Absolute
	16.6.2 Position-independent

	16.7 Direct branch
	16.7.1 Absolute and position-independent

	16.8 Indirect branch
	16.8.1 Absolute
	16.8.2 Position-independent

	16.9 Data access
	16.9.1 Absolute
	16.9.2 Position-independent

	16.10 Thread-local storage
	16.10.1 Absolute
	16.10.2 Position-independent

