
 

Qualcomm® Hexagon™ Standalone 
Application
User Guide

80-N2040-2286 Rev. AC

May 24, 2022

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm and Hexagon are trademarks or registered trademarks of Qualcomm Incorporated. Other product and brand names may 
be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. 
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2021-2022 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.



80-N2040-2286 Rev. AC 2

Contents

1 Introduction .............................................................................................. 3
1.1 Conventions ......................................................................................................................3
1.2 Technical assistance ..........................................................................................................3

2 Build procedure........................................................................................ 4
2.1 Runtime system configuration..........................................................................................4
2.2 L1 and L2 cache attributes ................................................................................................4
2.3 Parameters........................................................................................................................5

3 Runtime support library .......................................................................... 8
3.1 Cache properties...............................................................................................................8
3.2 Functions and macros.....................................................................................................10

3.2.1 add_translation()...................................................................................................10
3.2.2 add_translation_fixed() .........................................................................................11
3.2.3 add_translation_extended()..................................................................................12
3.2.4 thread_create() .....................................................................................................14
3.2.5 thread_create_extended() ....................................................................................15
3.2.6 thread_stop().........................................................................................................16
3.2.7 thread_join() .........................................................................................................16
3.2.8 thread_get_tnum()................................................................................................16
3.2.9 lockMutex() ...........................................................................................................17
3.2.10 unlockMutex() .....................................................................................................17
3.2.11 trylockMutex().....................................................................................................18
3.2.12 register_interrupt() .............................................................................................19
3.2.13 SIM_ACQUIRE_HVX.............................................................................................20
3.2.14 SIM_RELEASE_HVX..............................................................................................20
3.2.15 acquire_vector_unit()..........................................................................................21
3.2.16 release_vector_unit() ..........................................................................................21
3.2.17 set_double_vector_mode().................................................................................22
3.2.18 clear_double_vector_mode()..............................................................................22
3.2.19 power_vector_unit() ...........................................................................................23

4 Example .................................................................................................. 24



80-N2040-2286 Rev. AC 3

1  Introduction

This document describes the build procedure, runtime support library, and example program 
for standalone Qualcomm® Hexagon™ applications that execute on the Hexagon processor.

These standalone applications are software programs that perform specific tasks such as 
vocoding. There are two types of applications:

■ RTOS applications that execute with a real-time operating system

■ Standalone applications that execute without operating system support

1.1  Conventions
Computer text, code names, and code samples appear in a different font, for example, 
printf(“Hello world\n”).

Button and key names appear in bold font, for example, click Save or press Enter.

The following notation is used to define command syntax:

■ Square brackets enclose optional items, for example, [label].

■ Bold indicates literal symbols, for example, [comment].

■ The vertical bar character, |, indicates a choice of items.

■ Parentheses enclose a choice of items for example, (add|del).

■ An ellipsis, ... , follows items that can appear more than once.

1.2  Technical assistance
For assistance or clarification on information in this document, submit a case to Qualcomm 
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to CreatePoint, register for access or send email to 
qualcomm.support@qti.qualcomm.com.

https://createpoint.qti.qualcomm.com
https://createpoint.qti.qualcomm.com


80-N2040-2286 Rev. AC 4

2  Build procedure

The build procedure for standalone Hexagon processor applications is identical to the build 
procedure for standard Linux applications. The procedure supports user configuration of the 
following runtime system properties:

■ Stack and heap

■ Memory management

■ Caches

■ ISDB

■ TCM

This document does not describe the following runtime environment properties for 
standalone applications:

■ Default IMASK and other register values

■ Permissions for non-fixed TLB entries (such as rwx for each 1 MB segment)

NOTE: These properties are currently not user-configurable and are subject to change in future 
tools releases.

2.1  Runtime system configuration
The runtime system for standalone Hexagon processor applications is configurable to support 
various hardware and software configurations.

The program start address is set with the linker option, --section-start. For example:
hexagon-clang -Xlinker --section-start -Xlinker .start=address hello.c 

The -Xlinker compiler option is used to specify that the following argument is passed to the 
linker as a command option.

2.2  L1 and L2 cache attributes
Set L1 and L2 cache attributes at runtime by calling the library function, add_translation() 
(Section 3.2.1).



80-N2040-2286 Rev. AC 5

Qualcomm Hexagon Standalone Application User Guide Build procedure

2.3  Parameters
The runtime system is configured primarily by passing various parameters to the linker on the 
compiler command line. In the following example, three parameters (STACK_SIZE, 
HEAP_SIZE, and STACK_START) are passed to specify the application stack and heap:

hexagon-clang -Wl,--defsym,STACK_SIZE=0x10000 -Wl,--defsym, 
HEAP_SIZE=0x10000 -Wl,--defsym, 
STACK_START=global_end+HEAP_SIZE+STACK_SIZE hello.c

The -Wl compiler option specifies that the following two arguments are passed to the linker 
as a single option. For example, the first -Wl option in the example above specifies the 
following linker option:

--defsym STACK_SIZE=0x10000

-Xlinker can also be used to pass parameters to the linker. However, in this case it is less 
efficient than -Wl because it can pass only one symbol at a time.

If you are linking an application directly (for example, by using the hexagon-link command), 
these parameters can be set directly using the --defsym linker option.

Table 2-1 lists the parameters defined for configuring the runtime system.

■ The default parameter values are consistent with developing a standalone application 
that runs on the Hexagon processor simulator.

■ The mode-controlling parameters use nonstandard values. Specifically, the value 1 
indicates that a mode or feature is disabled (rather than enabled).

 
Table 2-1  Runtime system parameters 

Parameter Description Category
STACK_START Base address of the program stack.

Default = (end of heap) + (stack size)
Application

STACK_SIZE Maximum stack size.
Default = 1 MB

HEAP_START Base address of the program heap.
Default = End of the global data area

HEAP_SIZE Heap size.
Default = 64 MB

PRE_INIT Address of the function that is called before any 
initialization is performed (if defined).

POST_EXIT Address of the function that is called after the program 
finishes executing, with no simulator or RTOS present (if 
defined).



80-N2040-2286 Rev. AC 6

Qualcomm Hexagon Standalone Application User Guide Build procedure

ANGEL_SUPPORT Specifies whether support for Angel semi-hosting is 
enabled.
■ 0 – Use default setting
■ 1 – Semi-hosting support is disabled
■ 2 – Semi-hosting support is enabled (Default)
Angel support is valid only if ISDB is secure and in trusted 
mode (by setting ISDB_SECURE_FLAG and 
ISDB_TRUSTED_FLAG).

Application 
(cont.)

ENABLE_DMT Specifies whether dynamic multi-threading is enabled.
■ 0 – Use default setting
■ 1 – Multi-threading is disabled
■ 2 – Multi-threading is enabled (Default)
Valid only for processor version V5 or greater.

Multi-threading

EVENT_VECTOR_BASE Event vector table base address (used to set EVB 
register)

Events

I_CACHE_ENABLE Specifies whether the instruction cache is enabled.
■ 0 – Use default setting
■ 1 – Cache is disabled
■ 2 – Cache is enabled (Default)

Cache

I_CACHE_HW_PREFETCH Specifies whether hardware instruction cache prefetching 
is enabled.
■ 0 – Use default setting
■ 1 – Prefetching is disabled
■ 2 – Prefetching is enabled (Default)

D_CACHE_ENABLE Specifies whether the data cache is enabled.
■ 0 – Use default setting
■ 1 – Data cache is disabled
■ 2 – Data cache is enabled (Default)

D_CACHE_HW_PREFETCH Specifies whether the hardware data cache is enabled.
■ 0 – Use default setting
■ 1 – Prefetching is disabled
■ 2 – Prefetching is enabled (default)

L2_CACHE_SIZE Size of the L2 cache.
■ 0 – Target-specific maximum L2 cache (Default).
■ 1 – 0 KB L2 cache (all TCM)
■ 2 – 64 KB L2 cache
■ 3 – 128 KB L2 cache
■ 4 – 256 KB L2 cache 
■ 5 – 512 KB L2 cache
■ 6 – 1024 KB L2 cache

L2_PARITY Specifies whether L2 parity is enabled.
■ 0 – Parity is disabled (Default)
■ 1 – Parity is enabled

Table 2-1  Runtime system parameters (cont.)

Parameter Description Category



80-N2040-2286 Rev. AC 7

Qualcomm Hexagon Standalone Application User Guide Build procedure

L2_WB Specifies whether L2 write back is enabled.
■ 0 – Write back is enabled (Default)
■ 1 – Write back is disabled

Cache 
(cont.)

TCM_BASE_ADDR Base address of the TCM memory. This address is 
processor dependent.
Valid only if L2/TCM partitioning enabled.

ENABLE_TRANSLATION Specifies whether MMU page table translation is enabled.
■ 0 – Use default setting
■ 1 – Translation is disabled
■ 2 – Translation is enabled (Default)
The MMU handles virtual-to-physical address translation.

TLB

TLB_MAP_TABLE_PTR Address of table of the default TLB entries. This address 
is used to load the TLB entry on a TLB miss.
Valid only if default TLB miss handler used.

ISDB_SECURE_FLAG Specifies whether ISDB is secure.
■ 0 – Use default setting.
■ 1 – ISDB is not secure (Default)
■ 2 – ISDB is secure

Debugging

ISDB_TRUSTED_FLAG Specifies whether ISDB is trusted.
■ 0 – Use default setting
■ 1 – ISDB untrusted mode (Default)
■ 2 – ISDB trusted mode

ISDB_DEBUG_FLAG Specifies whether ISDB debugging is enabled.
■ 0 – Use default setting
■ 1 – ISDB debug is off (Default)
■ 2 – ISDB debug is on

CORE_DUMP_BASE Base address of the core dump (if defined; otherwise use 
the default location).

ENABLE_PCYCLE Specifies whether auto-incrementing of the PCYCLE 
register is enabled.
■ 0 – Use default setting
■ 1 – Auto-incrementing is disabled
■ 2 – Auto-incrementing is enabled (Default)

Profiling

Table 2-1  Runtime system parameters (cont.)

Parameter Description Category



80-N2040-2286 Rev. AC 8

3  Runtime support library

The standalone runtime support library supports the following features:

■ Memory management

■ Multi-threaded programming

■ Thread synchronization (using mutexes)

■ Interrupt handling

■ HVX engine management

The library is accessed by including the library header file, hexagon_standalone.h. 
Section 3.2 describes the functions and macros that are defined in the library. For an example 
program, see Chapter 4.

3.1  Cache properties
The address translation functions (Section 3.2.1 through Section 3.2.3) accept a parameter 
that specifies the following cache properties of a remapped memory page:

■ Cached or uncached

■ Cache write-back (WB) or write-through (WT)

These properties can be specified for the L1 data and instruction caches, and for the L2 cache.

The following table lists the cache properties and the values used to specify them.

Table 3-1  Cacheability values 

Value L1 data cache L1 instruction cache L2 cache
0 Cached, WB Cached Uncached

1 Cached, WT Cached Uncached

2 Device-type, SFC Uncached Uncached

3 Uncached, SFC Uncached Uncached

4 Device-type Uncached Uncached

5 Cached, WT Uncached Cached, WT

6 Uncached Uncached Uncached

7 Cached, WB Cached Cached, WB 1

8 Cached, WB Cached Cached, WT

9 Cached, WT Cached Cached, WB



80-N2040-2286 Rev. AC 9

Qualcomm Hexagon Standalone Application User Guide Runtime support library

The following table lists the cache properties for V67 Small Core (V67t) and the values used to 
specify them.

10 Cached, WB Uncached Cached, WB/AUX 2

11 Cached, WT Uncached Cached, WT/AUX

12 Reserved Reserved Reserved

13 Uncached Uncached Cached, WT

14 reserved Reserved Reserved

15 Uncached Uncached Cached, WB
1 If L2$ supports write-back and WB feature is enabled; otherwise use WT.
2 Lines will be allocated into Auxiliary partition of L2$.

Table 3-2  Cacheability values (V67 Small Core) 

Value L1 data cache L1 instruction cache L2 Behavior
0 Reserved Reserved Reserved

1 Cacheable WT Cached Uncached

2 Device-type, SFC Uncached Uncached

3 Uncached SFC Uncached Uncached

4 Device-type Uncached Uncached

5 Cacheable, WT Uncached Uncached

6 Uncached Uncached Uncached

7 Cacheable, WB Cached Cached, WB

8-15 Reserved Reserved Reserved

Table 3-1  Cacheability values (cont.)

Value L1 data cache L1 instruction cache L2 cache



80-N2040-2286 Rev. AC 10

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2  Functions and macros

3.2.1  add_translation()
Remaps a Hexagon processor memory page.

Prototype

void add_translation(void *va,
                     void *pa, 
                     int cacheability)

Parameters

Detailed description

The add_translation() function is not designed to be thread safe. It can be called only 
from thread 0 and before any other threads are created.

The library defines memory as consisting of 4096 1 MB pages. By default, each page is 
assigned a one-to-one mapping between virtual and physical memory. However, 
standalone applications can remap individual pages to different areas in physical 
memory.

The application code remaps a page by calling add_translation(). For example:
add_translation(0x100000, 0xD8000000, 2);
add_translation(0x200000, 0xD8100000, 4);

For more information on memory management and caches, see the appropriate 
Qualcomm Hexagon Programmer’s Reference Manual.

va Pointer to the virtual memory address.

pa Pointer to the corresponding physical memory address.

cacheability Cache properties (Table 3-1). 
By default, the cacheability setting of each page is 0.



80-N2040-2286 Rev. AC 11

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.2  add_translation_fixed()
Remaps a Hexagon processor memory page using a fixed TLB entry.

Prototype

void add_translation_fixed(int index
                           void *va,
                           void *pa,
                           int cacheability,
                           int permissions)

Parameters

Detailed description

The add_translation_fixed() function is not designed to be thread safe. It can be 
called only from thread 0 and before any other threads are created.

The default TLB miss handler maintains a table of TLB entries for the address translations 
performed by a standalone application (Section 3.2.1). The handler uses a round-robin 
replacement strategy for all TLB entries except the first six:

❒ TLB index zero (0) is reserved and always provides translation for the TLB table.

❒ TLB entries 1 through 5 are excluded from the TLB-entry replacement strategy (that 
is, they are fixed) to support programs that require specific address translations.

The application code remaps a page using one of the fixed TLB entries by calling 
add_translation_fixed(). For example:

add_translation_fixed(1, 0x100000, 0xD8000000, 2, 4);
add_translation_fixed(4, 0x200000, 0xD8100000, 4, 7);

NOTE: This function uses the same default page size as described in Detailed description 
for add_translation() (Section 3.2.1).

index Index of a fixed TLB entry (1 through 5).

va Pointer to the virtual memory address.
If this parameter is NULL, the entry specified by the index parameter is 
invalid.

pa Pointer to the corresponding physical memory address.

cacheability Cache properties (Table 3-1).

permissions Memory access rights: 
■ 1 – Read 
■ 2 – Write 
■ 4 – Execute 
Multiple memory access rights can be specified by adding the 
individual permission values. For example, read/write permission is 
specified with the value 3 (1+2).



80-N2040-2286 Rev. AC 12

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.3  add_translation_extended()
Remaps a Hexagon processor memory page using direct access to a TLB entry.

This function is valid only for Hexagon processor version V5 or greater.

Prototype

int add_translation_extended(int index
                             void *va,
                             uint64_t pa,
                             unsigned int page_size,
                             unsigned int xwru,
                             unsigned int cccc,
                             unsigned int asid,
                             unsigned int aa,
                             unsigned int vg)

Parameters

index Index of a fixed TLB entry (1 through 5).

va Pointer to the virtual memory address.

pa Corresponding physical memory address.

page_size Page size (in bytes).
■ 0x1 – 4 KB
■ 0x2 – 16 KB
■ 0x4 – 64 KB
■ 0x8 – 256 KB
■ 0x10 – 1 MB
■ 0x20 – 4 MB
■ 0x40 – 16 MB
■ 0x80 – 64 MB
■ 0x100 – 256 MB
■ 0x200 – 1 GB

xwru Integer value interpreted as a 4-bit value representing the X, W, R, and 
U bits in a TLB entry.

cccc Cache properties (Table 3-1).

asid Integer value interpreted as a 7-bit value representing the ASID bit field 
in a TLB entry.

aa Integer value interpreted as a 2-bit value representing the A1 and A0 
bits in a TLB entry.

vg Integer value interpreted as a 2-bit value representing the V and G bits 
in a TLB entry.



80-N2040-2286 Rev. AC 13

Qualcomm Hexagon Standalone Application User Guide Runtime support library

Detailed description

The add_translation_extended() function is similar to add_translation_fixed() 
(Section 3.2.2), but it allows you to directly set the individual fields in a TLB entry. This 
function can also be used to specify page mappings with physical addresses that exceed 
32 bits.

NOTE: This function uses the same default page size as described in Detailed description 
for add_translation() (Section 3.2.1).

This add_translation_extended() function is not designed to be thread safe. It can 
be called only from thread 0 and before any other threads are created.

All TLB fields must be set to valid values.

NOTE: Allocating a page_size of 4 KB, 16 KB, 64 KB, or 256 KB (any size less than 1 
MB) will leave the remainder of the address space around the allocated 
page_size address area, within the 1 MB block in which it sits, unusable unless 
you manually create a TLB table entry. Any memory access of the unusable 
memory space will result in a TLB miss-RW exception.

Returns

❒ 0 — If the specified page is successfully remapped.

❒ Non-0 — Otherwise.



80-N2040-2286 Rev. AC 14

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.4  thread_create()
Creates and starts a new thread.

Prototype

void thread_create(void (*pc) (void *),
                   void *sp,
                   int threadno,
                   void *param);

Parameters

pc Pointer to the function executed by the thread.

sp Pointer to the memory area used as a thread stack. 
This parameter must be 8-byte aligned. Also, it must be set to the 
highest stack address in the thread stack memory area because the 
stack grows downward. 
For more information on stacks, see the appropriate Qualcomm 
Hexagon Programmer’s Reference Manual.

threadno Hardware thread number assigned to the thread (0 through 5).

param Pointer to the data structure accessed by the thread.



80-N2040-2286 Rev. AC 15

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.5  thread_create_extended()
Creates and starts a new thread using stack protection attributes.

NOTE: This function is intended for use only with processor version V61 or greater. If used with 
earlier processor versions, the framekey and stacksize attributes are ignored, and 
the function is then equivalent to thread_create().

Prototype

void thread_create_extended(void (*pc) (void *),
                            void *sp,
                            int threadno,
                            unsigned framekey,
                            unsigned stacksize,
                            void *param);

Parameters

Detailed description

This function is similar to thread_create() (Section 3.2.4), but it allows you to specify 
the framekey and stacksize stack protection attributes.

pc Pointer to the function executed by thread.

sp Pointer to the memory area used as thread stack.
This parameter must be 8-byte aligned. Also, it must be set to the 
highest stack address in the thread stack memory area because the 
stack grows downward.

threadno Hardware thread number assigned to thread (0 through 5).

framekey 32-bit value used to scramble return addresses stored on stack.

stacksize Size (in bytes) of memory area used as thread stack. 
This parameter must be greater than 0; it is used to set the 
FRAMELIMIT control register. 
For more information on stacks, see the appropriate Qualcomm 
Hexagon Programmer’s Reference Manual.

param Pointer to the data structure accessed by thread.



80-N2040-2286 Rev. AC 16

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.6  thread_stop()
Stops execution of the currently executing thread.

Prototype

void thread_stop(void);

3.2.7  thread_join()
Suspends the currently executing thread until the specified threads stop.

Prototype

void thread_join(int mask);

Parameters

3.2.8  thread_get_tnum()
Returns the hardware thread number (0 through 5) assigned to the currently executing 
thread.

This function is implemented as a macro.

Prototype

int thread_get_tnum(void);

mask Bit mask that specifies one or more hardware threads.
Bits 0 through 5 in the value indicate whether the corresponding 
hardware thread numbers are specified (for example, bit 0 = thread 0).



80-N2040-2286 Rev. AC 17

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.9  lockMutex()
Locks a specified mutex.

Prototype

void lockMutex(int *mutex);

Parameters

Detailed description

The variable referenced by mutex must be a global variable that is initialized to 0 before 
use as a mutex.

If the mutex variable is declared in internal memory, the variable’s memory attributes 
must be specified as cached and write-back; otherwise, the mutex behavior is undefined.

If the mutex variable is declared in external memory, the variable’s memory attributes 
must be specified as uncached; otherwise, the mutex behavior is undefined.

External-memory mutexes have additional system requirements. For more information, 
see the appropriate Qualcomm Hexagon Programmer’s Reference Manual.

3.2.10  unlockMutex()
Unlocks a specified mutex. (For more information, see Section 3.2.10.)

Prototype

void unlockMutex(int *mutex);

Parameters

mutex Pointer to the address of the variable used as a mutex.

mutex Pointer to the address of the variable used as a mutex.



80-N2040-2286 Rev. AC 18

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.11  trylockMutex()
Attempts to lock a specified mutex.

Prototype

int trylockMutex(int *mutex);

Parameters

Detailed description

If the specified mutex is not being used, this function performs a normal lock operation 
and returns the result value 1. Otherwise, it does not attempt to lock the mutex and 
returns the result value 0.

For more information, see Section 3.2.10.

mutex Pointer to the address of the variable used as a mutex.



80-N2040-2286 Rev. AC 19

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.12  register_interrupt()
Assigns a callback function to an interrupt.

Prototype

void register_interrupt(int intno, void (*IRQ_handler)(int intno));

Parameters

Detailed description

Interrupt callbacks are functions that are called by an interrupt. A callback function is 
defined in the application. It must be defined to accept the interrupt identifier as a 
function argument. The argument enables a single callback function to be written so it 
can handle multiple interrupts.

The Hexagon processor uses an L2 vectored interrupt controller (L2VIC) to manage 
interrupts. When the handler function is called, the intno parameter is always set to 31, 
with the actual interrupt number (0 through 1023) being stored in the Hexagon system-
level register VID. 

To access the actual interrupt number, the handler can define a simple register-access 
function. For example:
static inline uint32 get_int_number(void)
{
    uint32 reg;
    asm volatile ("%0=vid;"
                  :"=r"(reg));
    return reg;
} 

void IRQ_handler(int intno)
{
    uint32 INT_number;
    INT_number = get_int_number();
    switch (INT_number)
    {
         case 0:
                // Code to process interrupt number 0
                break;
         case 1:
                // Code to process interrupt number 1
                break;
         case default:
                // Code to process interrupts 2 to 1023
                break;
    }
}

intno Interrupt number (0 through 31).

IRQ_handler Pointer to the interrupt callback function.



80-N2040-2286 Rev. AC 20

Qualcomm Hexagon Standalone Application User Guide Runtime support library

If no callback function is assigned to an interrupt, the interrupt triggers an empty callback 
function. For more information, see the appropriate Qualcomm Hexagon Programmer’s 
Reference Manual.

3.2.13  SIM_ACQUIRE_HVX
Acquires an HVX engine before using it. Use of this macro is system-dependent.

Prototype

SIM_ACQUIRE_HVX;

Detailed description

When the number of hardware threads is greater than the number of HVX units, a thread 
using HVX instructions must first explicitly acquire one of the HVX engines.

A thread acquires an HVX engine by calling the macro, SIM_ACQUIRE_HVX. When a 
thread is finished using the HVX engine, it must call SIM_RELEASE_HVX to release the 
engine.

3.2.14  SIM_RELEASE_HVX
Releases an HVX resource. Use of this macro is system-dependent.

Prototype

SIM_RELEASE_HVX;



80-N2040-2286 Rev. AC 21

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.15  acquire_vector_unit()
Grabs a vector unit.

Prototype

int acquire_vector_unit(hexagon_vector_wait_t wait);

Parameters

Returns

❒ 1 – If a vector unit as been acquired.

❒ 0 – If a vector unit has not been acquired.

❒ Number of vector units that are free. This value is returned when 
HEXAGON_VECTOR_CHECK is passed. HEXAGON_VECTOR_CHECK does not lock the unit.

3.2.16  release_vector_unit()
Unlocks a vector unit.

Prototype

void release_vector_unit();

Detailed description

Unlocking the vector resource allows other threads to use it. This thread’s SSR:XA and 
SSR:XE bits are reset.

Subsequent HVX instructions will fault with an illegal execution of coprocessor 
instruction, SSR:CAUSE of 0x16.

The SIM_RELEASE_HVX macro calls release_vector_unit().

wait The input can be one of the following:
■ HEXAGON_VECTOR_WAIT – Wait until a resource is free.

The SIM_ACQUIRE_HVX macro calls acquire_vector_unit() 
with HEXAGON_VECTOR_WAIT.

■ HEXAGON_VECTOR_NO_WAIT – Return with or without the 
resource acquired.

■ HEXAGON_VECTOR_CHECK – Check to see if a resource is free.



80-N2040-2286 Rev. AC 22

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.17  set_double_vector_mode()
Puts a vector unit into Double Vector mode.

Prototype

void set_double_vector_mode();

Detailed description

Code used in this mode must be built with the -mhvx=double option.

The SIM_SET_HVX_DOUBLE_MODE macro calls set_double_vector_mode().

3.2.18  clear_double_vector_mode()
Clears the 128-byte vector mode bit in the SYSCFG register. 

Prototype

void clear_double_vector_mode();

Detailed description

Code used in this mode must be built with the -mhvx=single option.

The SIM_CLEAR_HVX_DOUBLE_MODE macro calls clear_double_vector_mode().



80-N2040-2286 Rev. AC 23

Qualcomm Hexagon Standalone Application User Guide Runtime support library

3.2.19  power_vector_unit()
Provides subsystem addresses for clock, reset, and power delay; and enables or disables the 
unit.

Prototype

extern void power_vector_unit (uint32_t volatile *clockbase,
                               uint32_t volatile *resetbase,
                               uint32_t volatile *powerbase,
                               int delay, int state);

Parameters

Detailed description

This function is used for very low-level verification and configuration on hardware.

This function will not do anything if it is called while running on a simulator (it is a no-
operation function). The function will perform its stated operations only when running on 
real hardware.

clockbase Pointer to the clock subsystem address.

resetbase Pointer to the reset subsystem address.

powerbase Pointer to the power delay subsystem address.

state Specify whether the unit is disabled (0) or enabled (1).



80-N2040-2286 Rev. AC 24

4  Example

This example demonstrates how to use standalone applications and the runtime support 
library (Chapter 3).

NOTE: The example program files are stored in the Hexagon tools installation folder in the 
directory, Examples/StandAlone_Applications.

Mandelbrot is the example program provided with the Hexagon tools releases. It computes a 
fractal image and displays it using character graphics. The program is contained in the single 
file, mandelbrot.c, which includes the header file, hexagon_standalone.h that is used to 
access the runtime support library.

To build the program, follow the instructions in the associated README file.

When executed, the program performs the following steps:

1. It spawns multiple worker threads using the runtime support library function, 
thread_create().

The number of threads created depends on the Hexagon processor version being used.

2. Each worker thread independently computes one part of the fractal image.

3. After the computations are completed, one of the worker threads locks a mutex (using 
the library function, lockMutex()), and writes the computed fractal image into the 
image buffer.

4. The program’s master thread (thread 0) then displays the computed fractal image on the 
console and unlocks the mutex.

5. When the program finishes executing, the Hexagon simulator creates a file named 
pmu_statsfile.txt, which contains the simulation statistics information.

NOTE: Because the program executes on the simulator, it takes some time before the 
computations are completed and the fractal image is displayed.


	1 Introduction
	1.1 Conventions
	1.2 Technical assistance

	2 Build procedure
	2.1 Runtime system configuration
	2.2 L1 and L2 cache attributes
	2.3 Parameters

	3 Runtime support library
	3.1 Cache properties
	3.2 Functions and macros
	3.2.1 add_translation()
	3.2.2 add_translation_fixed()
	3.2.3 add_translation_extended()
	3.2.4 thread_create()
	3.2.5 thread_create_extended()
	3.2.6 thread_stop()
	3.2.7 thread_join()
	3.2.8 thread_get_tnum()
	3.2.9 lockMutex()
	3.2.10 unlockMutex()
	3.2.11 trylockMutex()
	3.2.12 register_interrupt()
	3.2.13 SIM_ACQUIRE_HVX
	3.2.14 SIM_RELEASE_HVX
	3.2.15 acquire_vector_unit()
	3.2.16 release_vector_unit()
	3.2.17 set_double_vector_mode()
	3.2.18 clear_double_vector_mode()
	3.2.19 power_vector_unit()


	4 Example

