
Qualcomm Technologies, Inc.

Qualcomm® Hexagon™ Code Coverage
Profiler
User Guide

80-N2040-20 Rev. E

September 24, 2018

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries

Qualcomm and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other
product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2010-2015, 2017-2018 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 2

Contents

1 Introduction... 3
1.1 Conventions.. 3
1.2 Technical assistance.. 3

2 Overview.. 4
2.1 Profiling tool... 4
2.2 Profile data files.. 4
2.3 Profile reports ... 4

3 Using the Profiler.. 5
3.1 Create the profile data file .. 5

3.1.1 Create gmon files .. 5
3.2 Start the profiler.. 6
3.3 Profiler options ... 7
3.4 Input files.. 9
3.5 Output files ... 10

3.5.1 Profile report formats.. 10
3.5.1.1 Plain text reports.. 10
3.5.1.2 CSV reports ... 10
3.5.1.3 HTML reports.. 10

3.5.2 Generated profiling information ... 14
3.5.2.1 Annotated disassembly.. 14
3.5.2.2 Function statistics .. 15

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

1 Introduction

This document describes the Qualcomm® Hexagon™ code coverage profiler, which
displays information on the execution history of a program written for the Hexagon
processor.

This document is a reference for C programmers who have assembly language experience.

1.1 Conventions
Courier font is used for computer text and code samples:

unsigned long long hexagon_sim_read_pcycles()

The following notation is used to define command syntax:

 Square brackets enclose optional items (e.g., [label]).

 Bold indicates literal symbols (e.g., [comment]).

 The vertical bar character, |, indicates a choice of items.

 Parentheses enclose a choice of items (e.g., (add|del)).

 An ellipsis, ..., follows items that can appear more than once.

1.2 Technical assistance
For assistance or clarification on information in this document, submit a case to
Qualcomm Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send
email to support.cdmatech@qti.qualcomm.com.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

2 Overview

For a program written for the Hexagon processor, the code coverage profiler can display
the following information:

 Cycle counts for individual instructions

 Cycle counts for functions

 Program-relative cycle percentages for functions

The profiler operates as a standalone utility program that can generate the profiling
information in HTML or plain text format. It can profile all Hexagon processor
applications, whether standalone, RTOS-based, or single- or multi-threaded.

NOTE: The profiler performs postmortem processing of the target application: that is, it is
used after the target application has completed executing.

2.1 Profiling tool
The primary profiling tool for the Hexagon processor is the gprof profiler. For more
information, see the Hexagon gprof Profiler User Guide.

2.2 Profile data files
The code coverage profiler obtains its profiling information from data files (named gmon)
that are generated by the Hexagon simulator. For more information on generating profile
data files, see the Hexagon Simulator User Guide.

2.3 Profile reports
The code coverage profiler generates profiling information output in a report. Following
are the report formats:

 Plain text – a single text file

 CSV – a plain text file with comma-separated values (CSV format)

 HTML – of a top-level index file and a directory of the remaining HTML files

For details, see Section 3.5.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

3 Using the Profiler

Profiling a program is a two-step procedure:

1. Execute the program on the simulator with profiling enabled to generate a profile
data file (Section 3.1).

2. Run the code coverage profiler to analyze the profile data (Section 3.2).

The profiler generates two types of profile information:

 Annotated disassembly listing, in which the source code is intermixed with the
disassembly information. For details, see Section 3.5.2.1.

 Function statistics that display information about the functions in an application.
For details, see Section 3.5.2.2.

3.1 Create the profile data file
Before an application can be profiled, a profile data file must first be created for it.

To create a profile data file, simulate the application with the appropriate command option
to generate the profile data file. The simulator generates profile data files in gmon format
(which are typically used by the gprof profiler).

The code coverage profiler works with gmon files.

3.1.1 Create gmon files
When the simulator is invoked with the --profile command option, it generates one or
more gmon profile data files while it executes the target application. In some cases, a
program’s profile data is distributed across multiple profile data files:

 When a program is a multithreaded standalone program, its profile data files are
named for each hardware thread (such as gmon.t_0, gmon.t_1, ...).

 When a program is a multithreaded RTOS application, its profile data files are named
for each software thread (such as gmon.name1, gmon.name2, ...).

In these cases, all of the profile data files must be specified on the profiler command line.
For simplicity, the relevant command option accepts wildcard characters (e.g., gmon_t*).

For more information on profile data files, see the Hexagon Simulator User Guide.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

Hexagon Code Coverage Profiler User Guide Using the Profiler

3.2 Start the profiler
To start the code coverage profiler from a command line, type:

hexagon-coverage (-i executable_file | -d disassembly_file)
 [-o outfile | -c csv_outfile | --html html_outpath]
 gmon_data_files ...
 [options]

The program to be profiled must be specified with one of the following files:

 An executable file (using -i)

 A disassembly listing file (using -d)

Specify the profile report with one of the following formats:

 Plain text report (using -o)

 CSV report (using -c)

 HTML report (using -html)

The profile data files specified must be gmon files. All of the profile data files for the
application must be specified. Use wildcards to specify multiple profile data files (e.g.,
gmon_t*).

The remaining options are used to control the profiler output or the contents of the profile
report. (One exception, --mapfile, is used when the code coverage profiler is run on a
different machine than the machine the application was built on.)

If no profile report option is specified, a plain text report is written to the standard output
by default. If more than one profile report option is specified, only the last one on the
command line is recognized.

NOTE: The profiler must be run in a directory where you are able to create files.

NOTE: CSV reports contain function statistics only; they do not include program code.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

Hexagon Code Coverage Profiler User Guide Using the Profiler

3.3 Profiler options
The code coverage profiler options are used to control various profiling features from the
command line.

The options are specified by the command switches listed below. They can be specified in
any order.

-c filename | --csv-file filename
--color-max value
--color-min value
-d filename | --disasm_file filename
-D | --no-disasm
-F | --no-funcs
-h | --help
--html [pathname]
-i filename | --image filename | --symfile filename
-m filename | --mapfile filename
-o filename | --outfile filename
-q | --quiet
-S | --no-source
-v | --version
--verbose

Details:

-c filename
--csv-file filename

Write the profile report to the specified file in comma-separated values (CSV)
format.

CSV reports contain function statistics only.

--color-max value
Specify the threshold value for the maximum code coverage level (green) in an
HTML profile report. The default value is 80.

Numeric code coverage levels are color coded in HTML reports using green,
yellow, and red. Green indicates the highest coverage levels, red indicates the
lowest levels, and yellow indicates all levels in between.

--color-min value
Specify the threshold value for the minimum code coverage level (red) in an
HTML profile report. The default value is 20.

Numeric code coverage levels are color coded in HTML reports using green,
yellow, and red. Green indicates the highest coverage levels, red indicates the
lowest levels, and yellow indicates all levels in between.

-d filename
--disasm_file filename

Specify the input disassembly listing file.

Disassembly listings are created by the object file viewer utility. For more
information see the Hexagon Utilities User Guide.

This option is not used if -i is used.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

Hexagon Code Coverage Profiler User Guide Using the Profiler

-D
--no-disasm

Suppress the annotated disassembly listing in the profile report.

-F
--no-funcs

Suppress function summaries in the profile report (plain text format only).

-h
--help

Display code coverage profiler command options, and exit.

--html [pathname]
Write the profile report to the specified path in HTML format (Section 3.5). The
default path is the current directory.

-i filename
--image filename
--symfile filename

Specify the input executable file.

This option is not used if --disasm_file is used.

-m filename
--mapfile filename

Specify the map file used to locate the application source code when an
application is profiled on a different machine than the machine it was built on
(Section 3.4).

-o filename
--outfile filename

Write the profile report to the specified file in plain text format.

When no report option is specified, the profile report is written to the standard
output in plain text format.

-q
--quiet

Suppress the overall summary statistics line in the profile report (plain text format
only).

-S
--no-source

Suppress the annotated source code listing in the profile report.

-v
--version

Display the version number of the code coverage profiler, and exit.

--verbose

Display the name of each file and function as it is processed.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

Hexagon Code Coverage Profiler User Guide Using the Profiler

3.4 Input files

Profile data files

The code coverage profiler accepts as input one or more profile data files in gmon format
(Section 3.2).

Disassembly listing file

If the code coverage profiler is invoked with the -d option (Section 3.3), it requires a
disassembly listing file of the program being profiled. The profiler uses the symbols
defined in this file to generate its profiling information.

Disassembly listings are created by the object file viewer utility. For more information, see
the Hexagon Utilities User Guide.

Map files

If an application is built on one machine and then profiled on another machine, the
pathnames to the source code files that are stored in the executable’s debug information
might no longer be valid on the profiling machine. In this case, the profiler will include
only the disassembled code in a profile report.

If this problem occurs, a map file can be created. This file maps the source code directories
on the build machine (the application’s build pathnames) to the corresponding directories
on the profiling machine (the application’s profile pathnames).

This map file is a plain text file. Each line in the file contains the root path on the build
machine followed by the root path on the profile machine, with the two paths separated by
an = character.

For example:

/qc/hexagon/user = C:\Temp\src\dsp\prj\user
/dsp/core/kernel/qurt/ = C:\Temp\src\qurt\

When this file is specified on the command line, the profiler can locate the application
source code and include it in the profile report.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

Hexagon Code Coverage Profiler User Guide Using the Profiler

3.5 Output files
The profiling information generated by the code coverage profiler is output in a report that
presents the program source code and disassembled object code, along with metadata
appended to each line indicating the cycle counts and program-relative cycle percentages
for the associated code.

3.5.1 Profile report formats
Profile reports can be generated in the following formats.

3.5.1.1 Plain text reports

Plain text reports consist of a single text file (which defaults to stdout). These reports
contain the annotated source and disassembly code for the application, followed by a
summary detailing the coverage for each source file or function.

3.5.1.2 CSV reports

CSV reports consist of a plain text file in comma-separated values (CSV) format. These
reports contain function statistics only, and do not include any program code.

3.5.1.3 HTML reports

HTML reports consist of a top-level index file and a directory containing the remaining
HTML files. A separate HTML file is created for each source file. If no source file
information is available for a given function, a separate HTML file is generated for the
function.

Each HTML file contains the annotated source and assembly code for the corresponding
source file, followed by a summary detailing the coverage for each source file or function.

When the top-level index file is opened in a web browser, the HTML report displays two
panes:

 A table of contents (TOC) pane listing links to all the source files and functions in the
application. The TOC is paginated, and can be both searched and sorted.

 A source pane displaying the annotated source and disassembly code for the
application. The disassembly code can be hidden so only the source code is visible.

In both the TOC pane and source pane, user-definable color coding (Section 3.3) indicates
the level of coverage in each code line.

Figure 3-1 through Figure 3-3 show example pages in an HTML report.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

Hexagon Code Coverage Profiler User Guide Using the Profiler

Figure 3-1 HTML report (initial view)

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

Hexagon Code Coverage Profiler User Guide Using the Profiler

Figure 3-2 HTML report (annotated code)

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

Hexagon Code Coverage Profiler User Guide Using the Profiler

Figure 3-3 HTML report (file summary)

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Hexagon Code Coverage Profiler User Guide Using the Profiler

3.5.2 Generated profiling information

3.5.2.1 Annotated disassembly

In an annotated disassembly listing, the source code is intermixed with the disassembly
information (provided that the source code is accessible and was produced with the -g
option).

Each Hexagon processor instruction packet is prefixed with the cycle count for that
packet.

Packets that never executed are marked at the beginning of the line with **.

.

.

.
00005000 <main>:
#include <stdio.h>

int main()
{
 printf("Hello world!\n");
 20 cycles 5000: 10 41 00 5a 5a004110 { call 5220 <puts>
 5004: 60 45 80 49 49804560 r0 = memw (gp + #172)
 5008: 00 c0 9d a0 a09dc000 allocframe (#0) }

 return 21;
}
 2 cycles 500c: a0 42 00 78 780042a0 { r0 = #21
 5010: 1e c0 1e 90 901ec01e deallocframe }
 1 cycles 5014: 00 c0 9f 52 529fc000 jumpr r31
** 0 cycles 5018: 00 40 00 7f 7f004000 { nop
 501c: 00 c0 00 7f 7f00c000 nop }

00005020 <thread_create>:
** 0 cycles 5020: 00 40 24 72 72244000 { r4.h = #0
 5024: 47 42 02 8c 8c024247 r7 = asl (r2, #2)
 5028: 00 40 25 72 72254000 r5.h = #0
 502c: 00 c0 26 72 7226c000 r6.h = #0 }
.

80-N2040-20 Rev. E MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

Hexagon Code Coverage Profiler User Guide Using the Profiler

3.5.2.2 Function statistics

Following the disassembly list (Section 3.5.2.1) in the generated profiling information is
the list of functions with their statistics:

 The first line displays the function name, its address range, and any aliases it is known
by.

 The second line shows the total number of packets within the function's address range,
the number of these packets that were executed (cycle count > 0), and the packet
coverage.

Packet coverage is calculated as (packets executed) / (total packets), and is expressed as a
percentage value.

Function '_start' (0x00000000-0x00000018) is aliased with 'start':
 TotalPackets = 3, packets executed = 1, coverage = 33.33%
Function 'hexagon_start_init' (0x00000098-0x0000056c):
 TotalPackets = 310, packets executed = 301, coverage = 97.10%
Function 'coredump' (0x00000570-0x00000760) is aliased with '__coredump':
 TotalPackets = 125, packets executed = 0, coverage = 0.00%
<snip>
Function 'sys_Tlsget' (0x0000d590-0x0000d5ec):
 TotalPackets = 13, packets executed = 0, coverage = 0.00%
Function 'sys_write' (0x0000d5f0-0x0000d664):
 TotalPackets = 19, packets executed = 14, coverage = 73.68%
Function '_fini' (0x0000d680-0x0000d6b4):
 TotalPackets = 12, packets executed = 11, coverage = 91.67%
Function 'Unaccounted for packets' (0xffffffff-0xffffffff):
 TotalPackets = 792, packets executed = 0, coverage = 0.00%

The special function name, Unaccounted for packets, displays the number of packets
encountered in the program that were not within any defined function address range. This
case can be due to data existing within the .text section, or to some other reason (such as
TLB entries in the case of the crt0_standalone .S file).

The final line in the function statistics is an overall summary of the function statistics. It
has the following form:

-- Summary -*-* Total packets = 6265, packets executed = 1005,
coverage = 16.04%

This line displays the following information:

 Total number of packets encountered

 Number of packets actually executed

 Coverage percentage: (packets_executed) / (total_packets)

NOTE: The function statistics can be written to a separate file (in csv format) by using the
-c option (Section 3.3).

	1 Introduction
	1.1 Conventions
	1.2 Technical assistance

	2 Overview
	2.1 Profiling tool
	2.2 Profile data files
	2.3 Profile reports

	3 Using the Profiler
	3.1 Create the profile data file
	3.1.1 Create gmon files

	3.2 Start the profiler
	3.3 Profiler options
	3.4 Input files
	3.5 Output files
	3.5.1 Profile report formats
	3.5.1.1 Plain text reports
	3.5.1.2 CSV reports
	3.5.1.3 HTML reports

	3.5.2 Generated profiling information
	3.5.2.1 Annotated disassembly
	3.5.2.2 Function statistics

