

Qualcomm® Hexagon Simulator
User Guide

80-N2040-1786 Rev. AF

May 25, 2022

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm and Hexagon are trademarks or registered trademarks of Qualcomm Incorporated. Other product and brand names may
be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2021-2022 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

80-N2040-1786 Rev. AF 2

Contents

1 Introduction .. 9
1.1 Conventions ..9
1.2 Technical assistance ..9

2 Overview ... 10
2.1 Processor versions ..11
2.2 Type definitions ..11

3 Use the simulator .. 12
3.1 Input to the simulator...13
3.2 Run the simulator ...13
3.3 Options ...14

3.3.1 Simulator information ...17
3.3.2 Status messages ..17
3.3.3 Processor version ..18
3.3.4 Processor attributes ..18
3.3.5 Simulation environment..20
3.3.6 RTOS applications..22
3.3.7 Memory initialization ..23
3.3.8 Processor modeling...23
3.3.9 TCM modeling ...24
3.3.10 System configuration modeling...24
3.3.11 Bus modeling...25
3.3.12 gprof Profiling..26
3.3.13 Statistics ..27
3.3.14 Trace ..28
3.3.15 Cache trace..30
3.3.16 Filtering ...30

3.4 Screen messages...32
3.4.1 Additional information ..33
3.4.2 Idle modeling ..33

3.5 Warning messages ..34
3.6 Profile data files ..34
3.7 Trace files ..35

3.7.1 Program counter trace files...35
3.7.2 Memory trace files ..36
3.7.3 Bus trace files ..37
3.7.4 Micro-architecture trace files..39
3.7.5 Instruction cache trace files ..40

80-N2040-1786 Rev. AF 3

Qualcomm Hexagon Simulator User Guide Contents

3.7.6 Data cache trace files ..41
3.7.7 L2 cache trace files ..42

3.8 PMU statistics files..44
3.9 Packet statistics files ...45

4 Interfaces .. 46
4.1 Timer interface..46

4.1.1 Timer functions ...47
4.1.1.1 hexagon_sim_end_timer() ..48
4.1.1.2 hexagon_sim_init_timer() ...48
4.1.1.3 hexagon_sim_prof_off() ..49
4.1.1.4 hexagon_sim_prof_on() ..49
4.1.1.5 hexagon_sim_show_timer() ..50
4.1.1.6 hexagon_sim_start_timer() ...51

4.1.2 Cycle count function..52
4.1.2.1 hexagon_sim_read_pcycles() ..52

4.2 Cache interface ...53
4.2.1 Cache functions...53

4.2.1.1 hexagon_buffer_clean() ..53
4.2.1.2 hexagon_buffer_cleaninv()..54
4.2.1.3 hexagon_buffer_inv() ..54

4.3 Simulator System API..55
4.3.1 Simulator components ..55
4.3.2 Invoke simulator in Standalone mode...56
4.3.3 Invoke simulator in System Simulation mode ...57
4.3.4 File handling..58
4.3.5 Status results ...59
4.3.6 Simulator constructor (HexagonWrapper) ..60
4.3.7 Co-simulation ..62

4.3.7.1 Build co-simulations ..62
4.3.7.2 Execute co-simulations..63

4.3.8 Simulator configuration...64
4.3.8.1 ConfigureRemoteDebug()..64
4.3.8.2 ConfigureCosim() ...65
4.3.8.3 ConfigureOSAwareness()...66
4.3.8.4 ConfigureExecutableBinary() ...67
4.3.8.5 ConfigureAppCommandLine() ...68
4.3.8.6 ConfigureSimStdin()...69
4.3.8.7 ConfigureSimStdout() ..70
4.3.8.8 ConfigureSimStderr() ...71
4.3.8.9 ConfigureCoreFrequency() ..72
4.3.8.10 ConfigureTimingMode() ..73
4.3.8.11 ConfigureBypassIdle()..74
4.3.8.12 ConfigureAHB() ..75
4.3.8.13 ConfigureAXI2() ...76
4.3.8.14 ConfigureBusRatio()...77
4.3.8.15 ConfigureAHBBusRatio()..78
4.3.8.16 ConfigureAXI2BusRatio() ...78
4.3.8.17 ConfigureBusPenalty() ...79

80-N2040-1786 Rev. AF 4

Qualcomm Hexagon Simulator User Guide Contents

4.3.8.18 ConfigureAHBBusPenalty() ..80
4.3.8.19 ConfigureAXI2BusPenalty()..81
4.3.8.20 ConfigureTCM() ...82
4.3.8.21 ConfigureSubsystemBase() ..83
4.3.8.22 ConfigureL2tcmBase() ...84
4.3.8.23 ConfigureL2cfgBase()...85
4.3.8.24 ConfigureEtmcfgBase() ..86
4.3.8.25 ConfigureMemFill()..87
4.3.8.26 ConfigureMemFillRandom() ..88
4.3.8.27 ConfigureNULLPointerBehavior() ..89
4.3.8.28 ConfigureCoreDump() ...89
4.3.8.29 ConfigureGProf()..90
4.3.8.30 ConfigureProfileMode()...91
4.3.8.31 ConfigurePmuStatisticsFile()..92
4.3.8.32 ConfigurePacketAnalysis() ...93
4.3.8.33 ConfigureInstHistogram() ..94
4.3.8.34 ConfigurePCRangeFilter() ..95
4.3.8.35 ConfigureTimeRangeFilter()...96
4.3.8.36 EndOfConfiguration()...97
4.3.8.37 SetTracing()..98
4.3.8.38 ConfigureMaxPcycle()..100

4.3.9 External device API..101
4.3.9.1 AddBusAccessCallback() ..101
4.3.9.2 RemoveBusAccessCallback()..103
4.3.9.3 AddFrequencyChangeCallback() ..103
4.3.9.4 RemoveFrequencyChangeCallback() ...104
4.3.9.5 AddTimedCallback()...105
4.3.9.6 AddTimedCallbackFP() ...106
4.3.9.7 AddOneShotTimedCallback()...107
4.3.9.8 RemoveTimedCallback() ..108
4.3.9.9 AddMemWasWrittenCallback()...109
4.3.9.10 RemoveMemWasWrittenCallback() ..110
4.3.9.11 AddMemWasReadCallback() ...111
4.3.9.12 RemoveMemWasReadCallback() ..112
4.3.9.13 AddPCCallback()...113
4.3.9.14 RemovePCCallback() ..114
4.3.9.15 AddBeforeSimulationStartsCallback() ...115
4.3.9.16 AddEndOfSimulationCallback()..116
4.3.9.17 AddCoreReadyCallback() ...117
4.3.9.18 AddPrivilegeChangeCallback() ...118
4.3.9.19 AddQtimerCallback() ...119
4.3.9.20 GetAPIVersion() ...120
4.3.9.21 PrintBuildTag() ...121

4.3.10 Runtime simulator calls...123
4.3.10.1 EVB() ..123
4.3.10.2 CoreFrequency() ..123
4.3.10.3 VerboseMode()..124
4.3.10.4 AddSymbolFile()...124

4.3.11 Simulator control...125
4.3.11.1 LoadExecutableBinary() ...125

80-N2040-1786 Rev. AF 5

Qualcomm Hexagon Simulator User Guide Contents

4.3.11.2 Run() ..126
4.3.11.3 Step() ...127
4.3.11.4 StepTime() ...128
4.3.11.5 SetInterrupt()...129
4.3.11.6 AssertNMI..130
4.3.11.7 DeassertNMI() ...130
4.3.11.8 ClearInterrupt ..131
4.3.11.9 ClearAllInterrupts() ..131
4.3.11.10 SetBreakpoint ..132
4.3.11.11 ClearBreakpoint()...133
4.3.11.12 ClearAllBreakpoints() ...133
4.3.11.13 AssertReset() ...134
4.3.11.14 DeassertReset() ...134
4.3.11.15 BusTransactionFinished() ..135
4.3.11.16 WriteThreadRegister() ...136
4.3.11.17 ReadThreadRegister() ..136
4.3.11.18 WriteVectorRegister()..137
4.3.11.19 ReadVectorRegister()...138
4.3.11.20 WriteGlobalRegister()..139
4.3.11.21 ReadGlobalRegister() ...139
4.3.11.22 WriteTLBRegister() ..140
4.3.11.23 ReadTLBRegister()..140
4.3.11.24 WriteMemory()..141
4.3.11.25 ReadMemory()...142
4.3.11.26 WriteVirtual()...143
4.3.11.27 ReadVirtual()..144
4.3.11.28 ReadSymbolValue() ...145
4.3.11.29 TranslateVirtualToPhysical() ..146
4.3.11.30 CycleToTime() ..147
4.3.11.31 TimeToCycles() ..148
4.3.11.32 GetElapsedSimulationTime() ...149
4.3.11.33 GetSimulatedCycleCount() ..150
4.3.11.34 EmitPerfStatistics() ..151
4.3.11.35 EnablePacketAnalysis() ..152
4.3.11.36 ResetPacketAnalysis()..153
4.3.11.37 DumpPacketAnalysis() ...154
4.3.11.38 EnableInstHistogram() ...155
4.3.11.39 ResetInstHistogram() ...156
4.3.11.40 DumpInstHistogram() ..157
4.3.11.41 GetPowerStatistics() ..158
4.3.11.42 EnablePmu() ..161
4.3.11.43 DisablePmu() ...162
4.3.11.44 ResetPmu() ..163
4.3.11.45 DumpPmu() ...164
4.3.11.46 GetPmuIndexedStats()...165
4.3.11.47 PmuIsStatModeled()..166
4.3.11.48 PmuGetName()..167
4.3.11.49 PmuIsMaskable() ...168
4.3.11.50 AxiSlaveAccess() ..169
4.3.11.51 ReconnectMode() ..171

80-N2040-1786 Rev. AF 6

Qualcomm Hexagon Simulator User Guide Contents

4.3.11.52 PostMessageToSimulator()..172
4.4 Callbacks ...173

4.4.1 Co-simulation required functions..173
4.4.1.1 GetCosimVersion()...174
4.4.1.2 RegisterCosim()..175
4.4.1.3 RegisterCosimArgs() ..176
4.4.1.4 UnRegisterCosim() ...177

4.4.2 Callback functions ...178
4.4.2.1 BusTransactionRequestCallback() ...178
4.4.2.2 TimedCallback() ...180
4.4.2.3 MemoryWasWrittenCallback() ..180
4.4.2.4 MemoryWasReadCallback() ..181
4.4.2.5 FrequencyChangeCallback() ..181
4.4.2.6 PCCallback() ...182
4.4.2.7 CoreReadyCallback()..182

4.4.3 Cosim example ..183

A Statistics... 185

80-N2040-1786 Rev. AF 7

Qualcomm Hexagon Simulator User Guide Figures

Figures
Figure 3-1 Using the simulator ...12
Figure 4-1 Simulator components used in standalone and system simulations55

80-N2040-1786 Rev. AF 8

Qualcomm Hexagon Simulator User Guide Tables

Tables
Table 2-1 Supported processor versions...11
Table 2-2 Hexagon-specific type definitions ...11
Table 3-1 Command option used for generating profile data files ...34
Table 4-1 API status results ...59
Table 4-2 Power equation parameters..159

80-N2040-1786 Rev. AF 9

1 Introduction

This document describes the Qualcomm® Hexagon™ processor instruction set simulator,
which simulates the execution of Hexagon programs.

This document is intended for developers and support staff who work with system
simulations and co-simulation models.

1.1 Conventions
Computer text, code names, and code samples appear in a different font, for example,
printf(“Hello world\n”).

The following notation is used to define command syntax:

■ Square brackets enclose optional items, for example, [label].

■ Bold indicates literal symbols, for example, [comment].

■ The vertical bar character, |, indicates a choice of items.

■ Parentheses enclose a choice of items for example, (add|del).

■ An ellipsis, ... , follows items that can appear more than once.

1.2 Technical assistance
For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to CreatePoint, register for access or send email to
qualcomm.support@qti.qualcomm.com.

https://createpoint.qti.qualcomm.com
https://createpoint.qti.qualcomm.com

80-N2040-1786 Rev. AF 10

2 Overview

The simulator supports the following features:

■ Interactive debugging (via TRACE32 or LLDB debugger)

The simulator supports interactive debugging indirectly by serving as a simulation engine
for the TRACE32 debugger (via MCD) or the text-based LLDB debugger. The simulator can
also be used directly as a non-interactive simulation engine.

■ Execution profiling (via gprof profiler)

Execution profiling is supported using the text-based gprof profiler. Profiling can be
performed on any Hexagon application (standalone, RTOS-based, single-threaded, or
multi-threaded).

The Hexagon profiler can collect and postprocess execution time statistics to produce an
HTML that can be opened and navigated in any browser.

■ Execution trace and statistics (via simulator or PMU)

The simulator can generate execution traces and statistics. Statistics can be generated in
either a simulator-specific format, or as Hexagon PMU statistics. The simulator-specific
statistics can be generated for all or selected parts of the target application.

■ External devices (via co-simulator plug-ins)

The simulator supports plug-in co-simulators to enable co-simulations with external
devices.

■ Execution timing (via timer interface) and cache maintenance (via cache interface)

The simulator provides timer and cache APIs (implemented as C libraries) that enable
Hexagon applications to collect execution timing information and maintain the processor
caches while they are being simulated.

■ Client-controlled simulation (via APIs)

The simulator provides an API that enables client program control of a Hexagon
simulation, modeling the Hexagon core in a system simulation environment. The API is
also used to develop and perform co-simulations with external devices and higher-level
system simulations.

The simulator is not cycle-accurate. With timing enabled (see Section 3.3.8), the simulator is
cycle-approximate with a performance target of 3% cycle accuracy when compared to
similarly configured hardware. Various aspects of the micro-architecture are modeled
accurately, but other factors such as bus clock ratio and bus delay will impact the overall
accuracy.

80-N2040-1786 Rev. AF 11

Qualcomm Hexagon Simulator User Guide Overview

2.1 Processor versions
The simulator supports multiple versions of the Hexagon processor:

■ When used as a debugger simulation engine, the simulator automatically determines the
processor version of an object file from information stored in the file.

■ When used directly, the simulator defines command options (such as -mv62) that specify
the target Hexagon processor architecture to simulate.

For more information on these (and related) command options, see Section 3.3.3.

For more information on the Hexagon processors, see the Qualcomm Hexagon Programmer’s
Reference Manual.

Not all processor versions are supported in a specific Hexagon tools release.

2.2 Type definitions
Throughout this document, variable types are specified with type definitions. These
definitions are defined in the HexagonTypes.h file in the release distribution.

Table 2-1 Supported processor versions

Tools release Processor versions
8.0.x V5, V55, V56, V60, V61, V62

8.1.x V5, V55, V56, V60, V61, V62, V65

8.2.x V5, V55, V56, V60, V61, V62, V65, V66

8.3.x V55, V56, V60, V61, V62, V65, V66, V67, V67 Small Core (V67t)

8.4.x V62, V65, V66, V67, V67 Small Core (V67t), V68

8.5.x V65, V66, V67, V67 Small Core (V67t), V68, V69, V71, V71 Small Core (V71t)

8.6.x V65, V66, V67, V67 Small Core (V67t), V68, V69, V71, V71 Small Core (V71t),
V73

Table 2-2 Hexagon-specific type definitions

Type Name Description
HEX_<size>s_t
HEX_<size>u_t

Numeric value.
■ <size> = Digit denoting object size in bytes
■ s = Signed value
■ u = Unsigned value

HEX_VA_t Hexagon virtual address.
HEX_VA_t is defined to be equivalent to HEX_4u_t.

HEX_PA_t Hexagon physical address.
HEX_PA_t is defined to be equivalent to HEX_8u_t.

HEXAPI_<name> API enumeration parameter.

80-N2040-1786 Rev. AF 12

3 Use the simulator

This chapter explains how to execute an application on the simulator. The following block
diagram shows how the simulator is used.

Figure 3-1 Using the simulator

You can use the simulator as follows:

■ Simulation engine

The simulator supports interactive source-level debugging for the TRACE32 or LLDB
debugger. This use of the simulator is invisible to debugger users.

■ Standalone application

The simulator performs non-interactive simulation of target applications: target
applications are executed straight through to the end. This is useful for tasks such as
regression tests.

■ API

The simulator supports Hexagon processor core simulation in a system simulation
environment. The simulator API offers a rich interface for simplified integration into
system simulation environments.

Simulator

object files

Assembler Linker
Editor

Compiler

C/C++ source files assembly files executable file

data files prof/trace/stat fileslist file header files script file

80-N2040-1786 Rev. AF 13

Qualcomm Hexagon Simulator User Guide Use the simulator

3.1 Input to the simulator
The simulator accepts executable object files produced by the linker.

■ Profile files – Binary data files that contain information on how the target application
executed. This information is displayed by inputting the file to the Hexagon profiler.

■ Trace files – Contain histories of how the application executed. Separate trace files can be
generated for program counter accesses and for memory, bus, and cache accesses.

■ Statistics files – Contain summaries of instruction usage, cache usage, and bus traffic.

The simulator might read or write data files as part of simulating file input/output operations
performed by the target application. It might also generate files containing profile, trace, or
statistics information.

3.2 Run the simulator
To run the simulator from a command line, type:

hexagon-sim [option...] input_file

The simulator accepts the filename of the target application to be executed along with one or
more command-line options. For example:

hexagon-sim -mv62 --rtos q.cfg a.out

Command switches are used to control various simulator options. A switch consists of one or
two dash characters followed by a switch name and optional parameter. Note that switch
names are case-sensitive. Switches must be separated by at least one space.

The command switch (--) when delimited by spaces on either side is used to separate the
command arguments of the target application from those of the simulator. For example:

hexagon-sim --rtos q.cfg a.out -- 10 // 10 is target app arg
hexagon-sim --rtos q.cfg -- a.out 10 // alternate form

The filename argument can be specified on either side of the -- switch.

To list the available command options, type:
hexagon-sim --help

The simulator displays on the screen the proper command line syntax, followed by a list of
the available command options.

80-N2040-1786 Rev. AF 14

Qualcomm Hexagon Simulator User Guide Use the simulator

3.3 Options
The simulator options are used to control simulation features from the command line. They
are specified by the command switches listed below.

Several simulator options are used to specify the simulated target hardware environment.
While these options do have default values, the defaults are not universally suitable for all
target hardware environments. Thus QTI recommends explicitly specifying all the target
hardware options as part of a simulation.

This practice is especially important when simulating program performance. For example, in
cycle-sensitive simulations the bus ratio and bus penalty should be specified for all buses
(processor, AHB, AXI2) used in the target hardware environment. If simulated time is the goal
of the simulation, the DSP clock frequency should be specified in addition to parameters that
have a significant impact on the cycle count.

Many additional revision IDs (or core IDs) are not listed here. To view them for a specific
Hexagon simulator version, use hexagon-sim -h -mv<x> with the respective hexagon
architecture version, <x>.

NOTE: Some options have alternate abbreviated switches defined for ease of use.

Simulator information (Section 3.3.1)

--build_tag
--help [version] | -h [version]
--version | -v

Status messages (Section 3.3.2)

--quiet | -q
--verbose

Processor version (Section 3.3.3)

-mv62 | -mv65 | -mv66 | -mv67 | -mv67t | -mv68 | -mv69
-mv71 | -mv71t | -mv73

Processor attributes (Section 3.3.4)

--ahbbuspenalty bus cycles
--ahbbusratio ratio
--axi2buspenalty bus cycles
--axi2busratio ratio
--buspenalty bus cycles
--busratio ratio
--dsp_clock MHz
--stackstart address
--v2p_translation mode

80-N2040-1786 Rev. AF 15

Qualcomm Hexagon Simulator User Guide Use the simulator

Simulation environment (Section 3.3.5)

--connection_timeout <seconds>
--coredump filename
--cosim_file filename
--gdbserv port | -G port
--nullptr action
--plimit pcycles_to_simulate
--reconnect
--sim_in filename | -I filename
--sim_out filename | -O filename
--sim_err filename | -E filename
--simulated_returnval
--usefs pathname

RTOS applications (Section 3.3.6)

--rtos filename
--symfile filename

Memory initialization (Section 3.3.7)

--memfill value
--memfill_rand seed

Processor modeling (Section 3.3.8)

--bypass_idle
--timing
--timing_nodbc

TCM modeling (Section 3.3.9)

--tcm:lowaddr address
--tcm:highaddr address

System configuration modeling (Section 3.3.10)

--etm_base value
--l2cfg_base value
--l2tcm_base value
--subsystem_base value

Bus modeling (Section 3.3.11)

--ahb:lowaddr address
--ahb:highaddr address
--axi2:lowaddr address
--axi2:highaddr address

80-N2040-1786 Rev. AF 16

Qualcomm Hexagon Simulator User Guide Use the simulator

gprof Profiling (Section 3.3.12)

--fast-profile
--profile | -p
--profile_timezero mode

Statistics (Section 3.3.13)

--packet_analyze filename
--pmu_statsfile filename

Trace (Section 3.3.14)

--bustrace filename | -b filename
--coproctrace filename
--memtrace filename | -m filename
--pctrace filename | -t filename
--pctrace_min filename | -u filename
--pctrace_nano filename
--uarchtrace filename

Cache trace (Section 3.3.15)

--dcachetrace filename
--icachetrace filename
--l2cachetrace filename

Filtering (Section 3.3.16)

--pcfilter startaddress-endaddress
--timefilter_ns starttime-endtime

80-N2040-1786 Rev. AF 17

Qualcomm Hexagon Simulator User Guide Use the simulator

3.3.1 Simulator information
These options are used as sole command arguments; they do not perform any simulation.

--build_tag

Displays the git tags used to build the simulator and accompanying libraries to the
console, and exit.
The output can be redirected into a file. The contents of the file are useful when
reporting a problem related to the simulator.

--help [version]
-h [version]

Displays simulator command options and exit.
If a processor version option is specified as an argument (-help -mv62, and so on),
the simulator additionally lists information on all the processor version options that
are defined for the specified processor version.
If the specified option includes both a processor version and micro-architecture (such
as -mv62a_512), the simulator additionally lists the information for only that option.
Using the version argument is the only way to list all the processor version options
that are defined for Hexagon V62 and later processors.
For more information on the processor version options, see Section 3.3.3.

--version
-v

Displays the version numbers of the simulator and its associated API, and exit.
For more information on the simulator API, see Chapter 4.

3.3.2 Status messages
--quiet
-q

Does not display simulator-generated messages.

--verbose

Displays any warning messages.
Warnings can be generated by multiple causes such as processor interrupts and
exception events (Section 3.5) being generated by the target application.

80-N2040-1786 Rev. AF 18

Qualcomm Hexagon Simulator User Guide Use the simulator

3.3.3 Processor version
-mv62
-mv65
-mv66
-mv67
-mv67t
-mv68
-mv69
-mv71
-mv71t
-mv73

Specifies the Hexagon processor version and micro-architecture to simulate. These
versions have properties listed when you use the hexagon-sim -h -mv<x> option
with the respective Hexagon architecture version, <x> (see Section 3.3.1).
The simulator input file must have been generated with a processor version that is
compatible with the specified processor version.
The default version is the one specified in the executable object file.
The generic options (such as -mv62) are provided for cases where the specific micro-
architecture is not relevant.

NOTE: Not all -mv<x> options are supported in a specific Hexagon tools release. For
more information, see Section 2.1.

For more information on the processors, see the Qualcomm Hexagon Programmer’s
Reference Manual.

3.3.4 Processor attributes
--buspenalty bus cycles

Specifies the AXI (main) bus access latency in terms of bus cycles. The latency is
specified as an integer value. A space must appear after the switch name.
For Hexagon V5 and later processors, latencies are expressed in terms of bus cycles.
For Hexagon V6x processors, the default latency is 75 bus cycles.
The bus is simulated at its own frequency, as determined by the --dsp_clock and
--busratio option settings.

--busratio ratio

Specifies the AXI (main) bus frequency in terms of a ratio with the Hexagon processor
frequency.
For Hexagon V6x processors, the default ratio is 2.
If the ratio is set to 1, a bus cycle is defined to equal a pcycle. If the ratio is set to 2, a
bus cycle is defined to be twice as long as a pcycle (and so on). For example, if the
processor runs at 600 MHz and the ratio is 3, the bus runs at 200 MHz.

80-N2040-1786 Rev. AF 19

Qualcomm Hexagon Simulator User Guide Use the simulator

--ahbbuspenalty bus cycles

Specifies the AHB bus access latency in terms of bus cycles. The latency is specified as
an integer value. A space must appear after the switch name.
For Hexagon V5 and later processors, latencies are expressed in terms of bus cycles.
For Hexagon V6x processors, the default latency is 75 bus cycles.
The bus is simulated at its own frequency, as determined by the --dsp_clock and
--ahbbusratio option settings.

--ahbbusratio ratio

Specifies the AHB bus frequency in terms of a ratio with the Hexagon processor
frequency.
For Hexagon V6x processors, the default ratio is 2.

--axi2buspenalty bus cycles

Specifies the AXI2 bus access latency in terms of bus cycles. The latency is specified as
an integer value. A space must appear after the switch name.
For Hexagon V5 and later processors, latencies are expressed in terms of bus cycles.
For Hexagon V6x processors, the default latency is 75 bus cycles.
The bus is simulated at its own frequency, as determined by the --dsp_clock and
--axi2busratio option settings.

--axi2busratio ratio

Specifies the AXI2 bus frequency in terms of a ratio with the Hexagon processor
frequency.
For Hexagon V6x processors, the default ratio is 2.

--dsp_clock MHz

Specifies the simulated processor clock speed (in MHz). The clock speed is specified
as an integer value. A space must appear after the switch name.
The clock speed determines the ratio of simulated to real time (Section 3.4).
The default clock speed is platform-specific.

NOTE: If you intend to convert cycle counts to simulated execution times, QTI
recommends explicitly specifying a clock speed and not depending on the
default value.

--stackstart address

Specifies the base address of the processor stack for thread 0. Used for standalone
applications.
The default stack base address is 0x40000000.
For more information on changing the stack location, see the Qualcomm Hexagon
Stand-alone Application User Guide (80-N2040-22).

80-N2040-1786 Rev. AF 20

Qualcomm Hexagon Simulator User Guide Use the simulator

--v2p_translation mode

Specifies whether or not virtual-to-physical address translation is performed for
applications where the Hexagon processor MMU is enabled.
■ If mode is set to 1, the simulator performs virtual-to-physical address translation.
■ If mode is set to 0, the simulator assumes all addresses are physical.
The default mode is 0.
When virtual-to-physical address translation is disabled in the simulator, it can still be
performed by an external object such as a debugger or OS Awareness module.

3.3.5 Simulation environment
--connection_timeout <seconds>

Optionally used when --gdbserv is used to limit the waiting time for the debugger
front end to connect.
Without this flag, the simulator waits forever. With this flag, the simulator waits for
the specified seconds, prints an error message, and then quits (if no connection is
made).

--coredump filename

Generates a binary core dump file when the target application is terminated after
generating an exception.
If an exception occurs when this option is not specified, the simulator will display a
message suggesting that you generate a core dump file and analyze it in the
debugger. For more information, see the Hexagon LLDB Debugger User Guide (80-
N2040-31).

--cosim_file filename

Specifies the co-simulators that are to register with the simulator. A space must
appear after the switch name.
The specified file is a text file that contains a list of pathnames specifying co-
simulator library files (*.dll on Windows, *.so on Linux). Alternatively, the co-
simulator library filenames can be specified in the text file without pathnames, with
the pathname being set in an environment variable (PATH on Windows,
LD_LIBRARY_PATH on Linux).
Predefined arguments to a co-simulator are specified after the corresponding library
filename. For more information on co-simulators, see Chapter 4.

--gdbserv port
-G port

Specifies TCP/IP socket that the simulator will write status information to during the
simulation. The socket is specified as an integer value.
Typically, this option is not user-specified. It is used by the TRACE32 and LLDB
debuggers to automatically start the simulator and connect to it.

80-N2040-1786 Rev. AF 21

Qualcomm Hexagon Simulator User Guide Use the simulator

--nullptr action

Specifies the action taken by the simulator when the target application performs a
NULL pointer dereference. The action is specified as an integer value.
Supported values for action:
■ 0 – Ignore any NULL pointer dereferences

A NULL pointer dereference is defined as an indirect memory reference
through virtual address 0.

■ 1 – Write warning message to the standard output
■ 2 – Write error message to standard output and exit simulation (default)

--plimit pcycle_to_simulate

Control the total amount of pcycles to limit the simulation.
The return value for hexagon-sim is a specific status code to highlight the nature of
the exit from the simulation. Typically, this flag is useful to prevent runaway tests.

--reconnect

Causes the simulator to continue running when the associated debugger front end
exits.
The simulator continues to execute in its current state (on hold, running a simulation,
and so on) while also monitoring the socket connection. After a fixed period of time
(such as 120 seconds) to allow TCP to wait out an obsoleted socket, the simulator will
reconnect if another debugger front-end attempts to connect to it.
By default, the simulator exits whenever the debugger front-end exits.

--sim_err filename
-E filename

Uses the specified file as the standard error stream for the target application. A space
must appear after the switch name.

--sim_in filename
-I filename

Uses the specified file as the standard input for the target application. A space must
appear after the switch name.

--sim_out filename
-O filename

Uses the specified file as the standard output for the target application. A space must
appear after the switch name.

--simulated_returnval

Causes the simulator to return a specific value to its caller indicating the final
execution status of the target application.

80-N2040-1786 Rev. AF 22

Qualcomm Hexagon Simulator User Guide Use the simulator

--usefs pathname

Causes the simulator to search for files in the directory with the specified path. It is
used for accessing shared object files that are loaded during program execution.
If this option is not specified, the simulator assumes that all such files are stored in
the current directory.

NOTE: This option affects only files being opened for reading. New files are always
created in the current directory.

3.3.6 RTOS applications
--rtos filename

Simulates the specified target application as an RTOS application.
The filename argument specifies the name of a text file that contains the pathname
for an RTOS Awareness module, a dynamic library that enables the simulation and
debugging of an application system. The specified RTOS Awareness module must
match the processor version used in the simulation (Section 3.3.3). For more
information, see the corresponding RTOS documentation.
If the --rtos option is not used, the simulator assumes that the target application is
a standalone application.

NOTE: The timer co-simulator must always be specified (with --cosim_file) when
running an RTOS application. For more information, see the corresponding
RTOS documentation.

--symfile filename

Loads symbols from the specified relocatable file. A space must appear after the
switch name.
When an RTOS application system is built, the symbol information contained in the
relocatable files is removed (stripped) from the final executable file. The simulator
requires this information to execute the application system; therefore, to provide this
information, the affected relocatable files must be specified with the --symfile
option.
Multiple files must be specified with multiple --symfile options.

NOTE: When running an RTOS application, the RTOS kernel file must always be
specified with this option.

80-N2040-1786 Rev. AF 23

Qualcomm Hexagon Simulator User Guide Use the simulator

3.3.7 Memory initialization
--memfill value

Initializes all bytes of simulated processor memory with the specified value before
loading and executing the target application.
The default value is 0x1F.

--memfill_rand seed

Initializes all bytes of simulated processor memory with random values before
loading and executing the target application. The specified integer value indicates the
seed of the random number sequence used to generate the random values.

NOTE: This option is used for application testing in situations where uninitialized
values might be causing application errors.

3.3.8 Processor modeling
--bypass_idle

Skips the execution of pcycles while the processor is idle due to all hardware threads
being in wait or off mode. This option speeds up the simulation when the processor
is idle for a significant amount of time.
If the number of skipped cycles is nonzero, the simulator screen messages include an
extra line that indicates the number of pcycles spent while the processor is idle in this
way (Section 3.4).
By default, this option is OFF for all architectures. Using it can accelerate programs
with the DSP frequently in Idle mode, but using it slows down programs that rarely
have the DSP in Idle mode.

--timing

Models the following processor micro-architecture as part of the simulation:
■ Cache (attributes are modeled, but not the actual data)
■ Multi-threading mode (SMT, IMT)
■ Processor stalls
When timing is enabled, the simulation more accurately models the operation of the
processor hardware. This impacts the speed of the simulation and improves the
accuracy of the profiling PMU statistics collected (Section 3.8).
For Hexagon V5 and later processor versions, this option is automatically mapped to
the --timing_nodbc option.

Cache

For Hexagon V5 and later processors, perfect caches are assumed and no modeling of
data is performed. Instead, all data requests that would be serviced from the cache in
the actual hardware are serviced by the backing memory storage model.

80-N2040-1786 Rev. AF 24

Qualcomm Hexagon Simulator User Guide Use the simulator

Multi-threading mode

For some Hexagon V6x processors, processor modeling includes the modeling of
Simultaneous Multi-Threading (SMT) mode. In SMT mode, the four hardware threads
are divided into two clusters. In many cases, packets can execute simultaneously on
both clusters, so up to two packets can commit in a cycle.
Without SMT, the processor modeling default is Interleaved Multi-Threading (IMT)
mode, where packets are executed on the hardware threads in round-robin order.
(This mode is commonly known as a barrel processor.)
For more information on caches and multi-threading, see the Qualcomm Hexagon
Programmer’s Reference Manual.

--timing_nodbc

Legacy option that is maintained for backward compatibility.
For Hexagon V5 and later processors, this option is internally mapped to -timing.

3.3.9 TCM modeling
--tcm:lowaddr address
--tcm:highaddr address

Uses the specified low and high memory addresses as the address range of the TCM
memory area. A space must appear after the switch name.

NOTE: QTI recommends reading the TCM starting address from the CFG table and
avoiding hard-coding the TCM address inside your code.

For more information on TCM, see the Qualcomm Hexagon Programmer’s Reference Manual.

3.3.10 System configuration modeling
These options are supported only in the Hexagon 7.x tool releases.

NOTE: Avoid using these options unless absolutely necessary. The effect is to load a specific
value into a specific slot of the CFG table (a read-only area in the actual hardware) and
nothing else.

--etm_base value

Specifies the ETM base address value that is stored in the configuration table
referenced by the Hexagon system-level register CFGBASE.
The base address value specifies bits [35:16] of a 36-bit physical memory address.
Bits [15:0] are assumed to be 0.

--l2cfg_base value

Specifies the L2 configuration base address value that is stored in the configuration
table referenced by the Hexagon system-level register CFGBASE.
The base address value specifies bits [35:16] of a 36-bit physical memory address.
Bits [15:0] are assumed to be 0.

80-N2040-1786 Rev. AF 25

Qualcomm Hexagon Simulator User Guide Use the simulator

--l2tcm_base value

Specifies the L2 TCM base address value that is stored in the configuration table
referenced by the Hexagon system-level register CFGBASE.
The base address value specifies bits [35:16] of a 36-bit physical memory address.
Bits [15:0] are assumed to be 0.
The simulator sets the value of the CFGBASE register itself to (value + 0x18), where
0x18 denotes 0x180000 in the physical address space.
If this option is not used, the simulator assigns the L2 TCM base address a default
value that is internally determined.

--subsystem_base value

Specifies the subsystem base address value that is stored in the configuration table
referenced by the Hexagon system-level register CFGBASE.
The base address value specifies bits [35:16] of a 36-bit physical memory address.
Bits [15:0] are assumed to be 0.

3.3.11 Bus modeling

NOTE: To enable an address decode range for AHB or AXI2, both the low and high addresses
must be specified. For details on AHB and AXI2, see Chapter 4.

--ahb:lowaddr address
--ahb:highaddr address

Uses the specified low and high memory addresses as the address decode range for
the AHB bus interface. A space must appear after the switch name.

--axi2:lowaddr address
--axi2:highaddr address

Uses the specified low and high memory addresses as the address decode range for
the AXI2 bus interface. A space must appear after the switch name.

80-N2040-1786 Rev. AF 26

Qualcomm Hexagon Simulator User Guide Use the simulator

3.3.12 gprof Profiling
--fast-profile

Generates a profile data file (named gmon) for use with the text-based Hexagon gprof
profiler or Hexagon code coverage profiler.
Fast profile data files contain information on how the target application executed,
with reduced called-function accuracy to improve profiling times. Only the function
call graph is affected. Every function called is still counted. The information is
displayed by inputting the files to the profiler.
When the target application is a multi-threaded standalone application this option
creates separate profile data files for each hardware thread (named gmon.t_0,
gmon.t_1, ...).
When the target application is a multi-threaded RTOS application, this option creates
separate profile data files for each software thread (named gmon.name1,
gmon.name2, ...) and an additional profile data file for the application startup code
(named gmon.t_Startup_0).
By default, the simulator generates profile data files in a format that is specific to the
Hexagon processor. The processor-specific data format differs from the standard GNU
format by enabling histogram buckets to contain values up to 264-1. The values are
pseudo-encoded values of variable length. This change removes the scaling
inaccuracies that resulted from rounding values stored in the GNU-style profile data
files.

NOTE: The gmon.t_Startup_0 file is created only in the 7.x tools releases.

For more information on profile data files, see Section 3.6.
 For more information on the gprof profiler, see the Qualcomm Hexagon gprof
Profiler User Guide (80-N2040-29).
For more information on the code coverage profiler, see the Hexagon Code Coverage
Profiler User Guide (80-N2040-20).

--profile
-p

Generates a profile data file (named gmon) for use with the text-based Hexagon gprof
profiler or Hexagon code coverage profiler.
Profile data files contain information on how the target application executed. The
information is displayed by inputting the files to the profiler.
When the target application is a multi-threaded standalone application this option
creates separate profile data files for each hardware thread (named gmon.t_0,
gmon.t_1, ...).
When the target application is a multi-threaded RTOS application, this option creates
separate profile data files for each software thread (named gmon.name1,
gmon.name2, ...) and an additional profile data file for the application startup code
(named gmon.t_Startup_0).

80-N2040-1786 Rev. AF 27

Qualcomm Hexagon Simulator User Guide Use the simulator

By default, the simulator generates profile data files in a format that is specific to the
Hexagon processor. The processor-specific data format differs from the standard GNU
format by enabling histogram buckets to contain values up to 264-1. The values are
pseudo-encoded values of variable length. This change removes the scaling
inaccuracies that resulted from rounding values stored in the GNU-style profile data
files.

NOTE: The gmon.t_Startup_0 file is created only in the 7.x tools releases.

For more information on profile data files, see Section 3.6.
For more information on the gprof profiler, see the Qualcomm Hexagon gprof Profiler
User Guide (80-N2040-29).
For more information on the code coverage profiler, see the Hexagon Code Coverage
Profiler User Guide (80-N2040-20).

--profile_timezero mode

Specifies whether or not gprof profiling starts from time zero.
For RTOS applications, a zero start time indicates that profile data collection begins
immediately, and thus includes the OS boot-up instructions.
If mode is set to 1, gprof profile data collection starts from time zero.
If mode is set to 0, OS boot-up instructions are not included in the profile data.

NOTE: Previous simulator versions that did not support this option behaved as if the
mode were set to 0.

3.3.13 Statistics
--packet_analyze filename

NOTE: This option is supported only in Hexagon V6x processors. It applies to the
Hexagon processor and coprocessor concurrently.

Generates a packet statistics file with the specified name. A space must appear after
the switch name.
Packet statistics files contain the number of commits, stalls, and bus accesses
performed by the instruction packet at the specified memory address. The stalls and
bus accesses are expressed in terms of PMU events.
The Hexagon profiler can postprocess the output to produce an HTML file.
If a filename is not specified, a packet statistics file is not generated.
For more information on packet statistics files, see Section 3.9.

--pmu_statsfile filename

Generates a PMU statistics file with the specified name. A space must appear after
the switch name.
PMU statistics files contain the raw PMU event values for each hardware thread. The
PMU monitors a wide variety of events related to instruction scheduling, and bus and
cache accesses.

80-N2040-1786 Rev. AF 28

Qualcomm Hexagon Simulator User Guide Use the simulator

This option must be used with the --timing option (Section 3.3.8).to ensure that
the generated statistics file contains valid data.
If this option is not specified, a PMU statistics file is automatically generated with the
default filename, pmu_statsfile.txt.
For more information on PMU events, see Section 3.8.

3.3.14 Trace
--bustrace filename
-b filename

Generates a bus trace file with the specified name. A space must appear after the
switch name.
Bus trace files contain a record of the buses accessed during execution of the target
application.

NOTE: This option must be used with the --timing option (Section 3.3.8).

For more information on bus trace files, see Section 3.7.3.

--coproctrace filename

Produces a trace of micro-architecture-level activities for the HVX coprocessor.
Because it is a micro-architecture-level trace, the file size is huge and the contents
might be slightly different between simulator versions. For the output to be useful,
the operation requires --timing.

--memtrace filename
-m filename

Generates a memory trace file with the specified name. A space must appear after
the switch name.
Memory trace files contain a record of the memory accesses performed during
execution of the target application (including both instruction and data accesses).
For more information on memory trace files, see Section 3.7.2.

--pctrace filename
-t filename

Generates a program counter trace file with the specified name. A space must appear
after the switch name.
Program counter trace files contain the following information:
■ A record of the program counter (PC) value at each cycle in the target application,

including all stall cycles.
■ The instruction packet executed at each PC value (for committed cycles only).
■ The contents of all processor registers after each cycle.
For more information on program counter trace files, see Section 3.7.1.

80-N2040-1786 Rev. AF 29

Qualcomm Hexagon Simulator User Guide Use the simulator

--pctrace_min filename
-u filename

Generates a minimal program counter trace file with the specified name. A space
must appear after the switch name.
Minimal program counter trace files contain less information than regular program
counter trace files—they include only a record of the program counter (PC) value at
each cycle in the target application. Unlike regular program counter trace files, they
do not include information on stalls, packets, or registers.

NOTE: This option is a subset of --pctrace and overrides it.

For more information on program counter trace files, see Section 3.7.1.

--pctrace_nano filename

Generates an ultra minimal program counter trace file with the specified name. A
space must appear after the switch name.
Ultra minimal program counter trace files contain less information than minimal
program trace files. They are intended for use when you are first investigating the
behavior of a program and need only minimal information on the program counter
(PC) value.

NOTE: This option is a subset of --pctrace and --pctrace_min, and it overrides
both of them.

For more information on program counter trace files, see Section 3.7.1.

--uarchtrace filename

Generates a micro-architecture trace file with the specified name. A space must
appear after the switch name.
Micro-architecture trace files contain a record of major micro-architecture events
(cache misses, packets executed, stall cycles, bus requests, and so on).
Micro-architecture trace files can generate huge amounts of data. Therefore, this
option should be used with filtering to limit the collection of trace file data to
relatively small time periods.

NOTE: Because of differences in the processor architecture, the contents of a micro-
architecture trace file might differ between processor versions.

For more information on micro-architecture trace files, see Section 3.7.4.

80-N2040-1786 Rev. AF 30

Qualcomm Hexagon Simulator User Guide Use the simulator

3.3.15 Cache trace
--dcachetrace filename

Generates a data cache trace file with the specified name. A space must appear after
the switch name.
Data cache trace files contain a record of the data cache accesses during execution of
the target application.
For more information on data cache trace files, see Section 3.7.6.

--icachetrace filename

Generates an instruction cache trace file with the specified name. A space must
appear after the switch name.
Instruction cache trace files contain a record of the instruction cache accesses during
execution of the target application.
For more information on instruction cache trace files, see Section 3.7.7.

--l2cachetrace filename

Causes the simulator to generate an L2 cache trace file with the specified name. A
space must appear after the switch name.
L2 cache trace files contain a record of the L2 cache accesses during execution of the
target application.

NOTE: The cache trace options can be used only if processor modeling is enabled (see
Section 3.3.8).

For more information on L2 cache trace files, see Section 3.7.7.

3.3.16 Filtering
--pcfilter startaddress-endaddress

Data collection begins when the instruction at a specified start address is executed,
and it continues until the instruction at a specified end address is executed. No space
can appear between the dash and address values.
Once constrained data collection ends, it does not start again during the program
execution (even if the start address is executed again).

NOTE: Filtering applies to all forms of data collection in the simulator: profile,
statistics, and trace data.

Filtering by address works in conjunction with filtering by time (using the
--timefilter_ns option). In particular, filtering begins when either the start-address
condition or start-time condition is satisfied, and it ends when either the end-address
condition or end-time condition is satisfied.

80-N2040-1786 Rev. AF 31

Qualcomm Hexagon Simulator User Guide Use the simulator

--timefilter_ns starttime-endtime

Data collection begins when the simulation reaches a specified start time, and it
continues until the simulation reaches a specified end time. Time is expressed in units
of nanoseconds. No space can appear between the dash and address values.
Once constrained data collection ends, it does not start again during the program
execution.

NOTE: Filtering applies to all forms of data collection in the simulator: profile,
statistics, and trace data.

Filtering by time works in conjunction with filtering by address (using the --pcfilter
option). In particular, filtering begins when either the start-time condition or
start-address condition is satisfied, and it ends when either the end-time condition or
end-address condition is satisfied.

80-N2040-1786 Rev. AF 32

Qualcomm Hexagon Simulator User Guide Use the simulator

3.4 Screen messages
When the simulator is executed, it displays the following information on the screen:

$ hexagon-sim -mv62 a.elf
Hexagon-sim INFO: the rev_id used in the simulation is 0x00004062
(v62a_512)
hello, world

Done!
T0: Insns=5648 Tcycles=7931
T1: Insns=0 Tcycles=0
T2: Insns=0 Tcycles=0
T3: Insns=0 Tcycles=0
Total: Insns=5648 Pcycles=47587

The processor version that is being simulated (in this case, V62) is displayed immediately after
the simulator command.

While not necessary, QTI recommends that you always specify the processor version on the
command line (see Section 3.3.3). Specify the exact revision ID (such as -mv62a_512) so the
simulator behaves as close as possible to the usage scenario. Remember that within the same
architecture versions, all the core variations can have very different parameters.

Any text written to the standard output by the target application (hello, world in this case)
is displayed immediately after the processor version information.

When the simulator executes to the end of the target application, it displays the following
information:

■ The status message, Done!

■ The number of instructions executed and the thread cycle count (Tcycles) for each
hardware thread (T0 through T5 for processor versions with six threads)

■ The total number of instructions executed and total processor cycle count (Pcycles) for all
hardware threads

NOTE: For Hexagon V5 and later processors, the end of simulation statistics are focused on
packet counts and pcycles.

NOTE: The simulator-generated messages can be suppressed with the --quiet option
(Section 3.3.2).

80-N2040-1786 Rev. AF 33

Qualcomm Hexagon Simulator User Guide Use the simulator

3.4.1 Additional information
In some Hexagon tools releases, the simulator displays the following additional information
on the screen:

■ The simulator speed (in terms of millions of instructions per wall-clock second)

■ The processor clock rate, the speed ratio of the simulator to the actual processor, and the
simulator execution time in wall-clock seconds

The processor clock rate (600 MHz in this case) is determined by the --dsp_clock option
(Section 3.3.4).

The speed ratio indicates that the target application was simulated at a rate that is a certain
number of times slower than a 600 MHz Hexagon processor would execute the same
application in real time (based on wall-clock seconds). The ratio is based on processor cycles,
not on instructions per second—it is computed with the following formula:

 (Pcycles / wall_clock_seconds) / processor_clock_MHz

NOTE: The reported simulator speed and speed ratio may vary according to factors such as the
overall computer load and complexity of instructions being simulated. However, any
such variations will not in any way affect the performance of the algorithm being
simulated.

3.4.2 Idle modeling
When --bypass_idle is used (Section 3.3.8) and the number of recorded idle cycles is
nonzero, the simulator screen messages include an extra line indicating the total number of
processor cycles simulated, which includes the simulated idle cycles:

Total simulated Pcycles (including wait) = 1000013401

80-N2040-1786 Rev. AF 34

Qualcomm Hexagon Simulator User Guide Use the simulator

3.5 Warning messages
The simulator displays warning messages on the screen to indicate various events. Here are
some of the more common ones:

■ Incorrectly-specified command-line options or option arguments

■ A command line is too long

■ NULL pointer dereferences were performed by the target application

■ Hexagon processor interrupts or exceptions that occur while the target application is
executing

For example:
WARNING: NULL pointer dereference: TNUM=0 PCYC=23860 PC=4a5 VADDR=0

WARNING: register_tlb_missrw_exception in arch/system.c:339:
 TLB miss-RW exception detected on tnum=0 PC:2400,
 badva=0x3ffffff8 access_type=S cycle=1866

The --nullptr option (Section 3.3.5) controls warning messages for NULL pointer
dereferences. The --verbose option (Section 3.3.1) controls warning messages for processor
interrupts and exceptions.

For more information on processor interrupt and exception events, see the Qualcomm
Hexagon Programmer’s Reference Manual.

3.6 Profile data files
Profile data files are binary files that contain information on how the target application
executed (for example, call graphs and execution time per function). This information is not
directly human-readable; it is displayed by inputting the profile data file to the Hexagon gprof
profiler or Hexagon code coverage profiler.

In some cases, the simulator might generate multiple profile data files for an application.

NOTE: Some profile data might be inaccurate due to data normalization.

For more information on the options and data files, see Section 3.3.12.

For more information on the gprof profiler, see the Qualcomm Hexagon gprof Profiler User
Guide (80-N2040-29).

For more information on the code coverage profiler, see the Qualcomm Hexagon Code
Coverage Profiler User Guide (80-N2040-20).

Table 3-1 Command option used for generating profile data files

Target profiler Command options Profile data file
hexagon-gprof --profile

--fast-profile
gmon.t_x

hexagon-coverage --fast-profile gmon.t_x

80-N2040-1786 Rev. AF 35

Qualcomm Hexagon Simulator User Guide Use the simulator

3.7 Trace files
Trace files are text files that contain a detailed record of the execution events that occur
during the execution of a target application.

The simulator can generate separate trace files for the following execution events:

■ Program counter (PC) accesses

■ Hardware thread stalls

■ Memory accesses

■ Bus accesses

■ Micro-architecture events

■ Data cache accesses

■ Instruction cache accesses

■ L2 cache accesses

The generation of each type of trace file is controlled by the corresponding trace option
(Section 3.3.14 and Section 3.3.15).

A trace file contains a sequence of trace entries, with each entry occupying one or more lines
in the file (depending on the trace type). An individual trace entry consists of a series of
name = value pairs that display information specific to the trace type.

NOTE: Trace files can become indefinitely large for longer programs. They can be reduced in
size by filtering the generated trace data (Section 3.3.16).

3.7.1 Program counter trace files
Program counter trace files contain the following information:

■ A record of the program counter (PC) value at each cycle in the target application,
including all stall cycles.

■ The instruction packet executed at each PC value (for committed cycles only).

■ The contents of all processor registers after each cycle.

File syntax

Trace entries for program counter trace files have the following (multi-line) syntax:
Tnum VA=addr PA=addr PCYC=val instruction/status
Thread registers:
register: value ...
Global registers:
register: value ...

NOTE: The trace file syntax described here applies to V60 and later processors. The syntax used
for earlier processor versions differs somewhat in field names and field ordering.

80-N2040-1786 Rev. AF 36

Qualcomm Hexagon Simulator User Guide Use the simulator

Options

Tnum

Hardware thread number (decimal digit).

VA=addr

Virtual address of instruction (hexadecimal value with leading 0x).

PA=addr

Physical address of instruction (hexadecimal value with leading 0x).

PCYC=val

Processor cycle (decimal value).

instruction/status

Instruction packet disassembly or status of thread.

register: value

Register name/value pair (hexadecimal value with leading 0x).

NOTE: A minimal program counter trace file can be generated using the simulator
option --pctrace_min (Section 3.3.14). The minimal trace file lists only the
hardware thread number, PC virtual/physical address, and cycle number.

3.7.2 Memory trace files
Memory trace files contain a record of the memory accesses performed during execution of
the target application (including both instruction and data accesses).

File syntax

Trace entries for memory trace files have the following syntax:
TNUM=num:TYPE=(IF|DR|DW):PCYC=val:PC=addr:VA=addr:PA=addr:WIDTH=val:
DATA=val:val:

NOTE: The trace file syntax described here applies to Hexagon V60 and later processors. The
syntax used for earlier processor versions differs somewhat in field names and field
ordering.

Options

TNUM=num

Hardware thread number (decimal digit).

TYPE=type

Memory access type.

IF

Instruction fetch from memory.

80-N2040-1786 Rev. AF 37

Qualcomm Hexagon Simulator User Guide Use the simulator

DR

Data read from memory.

DW

Data write to memory.

PCYC=val

Processor cycle (decimal value).

PC=addr

Instruction address making request (hexadecimal value with no leading 0x).

VA=addr

Virtual address accessed (hexadecimal value with no leading 0x).

PA=addr

Physical address accessed (hexadecimal value with no leading 0x).

WIDTH=val

Number of bytes read (possible values 1, 2, 4, 8, 12, 16).

DATA=val:val:

Actual data values read (two hexadecimal values with no leading 0x).

NOTE: When WIDTH=12 or 16, only 8 data bytes are printed.

3.7.3 Bus trace files
Bus trace files contain a record of the buses accessed by the target application.

File syntax

Trace entries for bus trace files have the following syntax:
PCYC=val:Tnum:PC=addr:(BUSREQ|BUSRSP):TYPE=(IFETCH|DREAD|DWRITE):
ID=val:PA=addr:WIDTH=val[:DELAY=val]

NOTE: The trace file syntax described here applies to Hexagon V60 and later processors. The
syntax used for earlier processor versions differs somewhat in field names and field
ordering.

Options

PCYC=val

Processor cycle (decimal value).

Tnum

Hardware thread number (decimal digit).

80-N2040-1786 Rev. AF 38

Qualcomm Hexagon Simulator User Guide Use the simulator

PC=addr

Packet address making request (hexadecimal value with no leading 0x).

BUSREQ

Bus access request.

BUSRSP

Bus returned data or responded to request.

TYPE=type

Memory access type.

IFETCH

Instruction fetch.

DREAD

Data read.

DWRITE

Data write.

ID=val

Bus request identifier.

PA=addr

Physical address accessed (hexadecimal value with no leading 0x).

WIDTH=val

Number of bytes accessed (decimal value).

DELAY=val

Latency (in pcycles) between bus request and response (decimal value).

NOTE: A physical address can appear in a bus trace without appearing in the
corresponding memory trace, if a cache line containing the address is
prefetched but never used.

80-N2040-1786 Rev. AF 39

Qualcomm Hexagon Simulator User Guide Use the simulator

3.7.4 Micro-architecture trace files
Micro-architecture trace files contain a record of major micro-architecture events (cache
misses, packets executed, stall cycles, bus requests, and so on).

File syntax

Trace entries for micro-architecture trace files have the following syntax:
PCYC=val:Tnum:PC=addr:(BUSREQ|BUSRSP):TYPE=(IFETCH|DREAD|DWRITE):
ID=val:PA=addr:WIDTH=val[:DELAY=val]

PCYC=val:Tnum:PC=addr:STALL:stalltype

PCYC=val:Tnum:PC=addr:COMMIT

PCYC=val:Tnum:PC=addr:instruction

NOTE: The trace file syntax described here applies to Hexagon V60 and later processors. The
syntax used for earlier processor versions differs somewhat in field names and field
ordering.

Options

PCYC=val

Processor cycle (decimal value).

Tnum

Hardware thread number (decimal digit).

PC=addr

Packet address making request (hexadecimal value with no leading 0x).

BUSREQ

Bus access request.

BUSRSP

Bus returned data or responded to request.

TYPE=type

Memory access type.

IFETCH

Instruction fetch.

DREAD

Data read.

DWRITE

Data write.

80-N2040-1786 Rev. AF 40

Qualcomm Hexagon Simulator User Guide Use the simulator

ID=val

Bus request identifier.

PA=addr

Physical address accessed (hexadecimal value with no leading 0x).

WIDTH=val

Number of bytes accessed (decimal value).

DELAY=val

Latency (in pcycles) between bus request and response (decimal value).

STALL=stalltype

Packet stall (unquoted string value).

COMMIT

Packet commit.

instruction

Instruction packet disassembly.

3.7.5 Instruction cache trace files
Instruction cache trace files contain a record of the instruction cache accesses during
execution of the target application.

File syntax

Trace entries for instruction cache trace files have one of the following syntaxes:
PCYC=val:Tnum:PC=addr:ICACHE:(MISS|REPLACE):VA=addr:PA=addr

NOTE: The trace file syntax described here applies to Hexagon V60 and later processors. The
syntax used for earlier processor versions differs somewhat in field names and field
ordering.

Options

PCYC=val

Processor cycle (decimal value).

Tnum

Hardware thread number (decimal digit).

PC=addr

Packet address making request (hexadecimal value with no leading 0x).

ICACHE

Instruction cache operation.

80-N2040-1786 Rev. AF 41

Qualcomm Hexagon Simulator User Guide Use the simulator

MISS

Instruction cache miss.

REPLACE

Instruction cache replace.

VA=addr

Virtual address accessed (hexadecimal value with no leading 0x).

PA=addr

Physical address accessed (hexadecimal value with no leading 0x).

3.7.6 Data cache trace files
Data cache trace files contain a record of the data cache accesses during execution of the
target application.

File syntax

Trace entries for data cache trace files have one of the following syntaxes:
PCYC=val:Tnum:PC=addr:DCACHE:(MISS|HIT):TYPE=(DCFETCH|DREAD|DWRITE):
VA=addr:PA=addr[:WAY=val]

NOTE: The trace file syntax described here applies to Hexagon V60 and later processors. The
syntax used for earlier processor versions differs in field names and field ordering.

Options

PCYC=val

Processor cycle (decimal value).

Tnum

Hardware thread number (decimal digit).

PC=addr

Packet address making request (hexadecimal value with no leading 0x).

DCACHE

Data cache operation.

MISS

Data cache miss.

HIT

Data cache hit.

TYPE=type

Memory access type.

80-N2040-1786 Rev. AF 42

Qualcomm Hexagon Simulator User Guide Use the simulator

DCFETCH

Data cache fetch.

DREAD

Data read.

DWRITE

Data write.

VA=addr

Virtual address accessed (hexadecimal value with no leading 0x).

PA=addr

Physical address accessed (hexadecimal value with no leading 0x).

WAY=val

Number of L1 cache ways (decimal value).

3.7.7 L2 cache trace files
L2 cache trace files contain a record of the L2 cache accesses during execution of the target
application.

File syntax

Trace entries for L2 cache trace files have one of the following syntaxes:
PCYC=val:Tnum:PC=addr:L2CACHE:cacheop:VA=addr:PA=addr:INDEX=val[:WAY=
val]

NOTE: The trace file syntax described here applies to Hexagon V60 and later processors. The
syntax used for earlier processor versions differs in field names and field ordering.

Options

PCYC=val

Processor cycle (decimal value).

Tnum

Hardware thread number (decimal digit).

PC=addr

Packet address making request (hexadecimal value with no leading 0x).

L2CACHE:cacheop

L2 cache operation.

MISS

Data cache miss.

80-N2040-1786 Rev. AF 43

Qualcomm Hexagon Simulator User Guide Use the simulator

HIT

Data cache hit.

LOAD

Memory load.

STORE

Memory store.

SCALAR

Access by processor core.

IPREFETCH

Access due to instruction prefetch.

REPLACE

Access due to instruction cache replace.

CLEAN

Instruction cache replace does not require memory write.

DIRTY

Instruction cache replace requires memory write.

VA=addr

Virtual address accessed (hexadecimal value with no leading 0x).

PA=addr

Physical address accessed (hexadecimal value with no leading 0x).

INDEX=val

L2 cache index (decimal value).

WAY=val

Number of L2 cache ways (decimal value).

80-N2040-1786 Rev. AF 44

Qualcomm Hexagon Simulator User Guide Use the simulator

3.8 PMU statistics files
The simulator collects PMU statistics while an application is running. When the application
terminates, the collected statistics are written to a PMU statistics file.

PMU statistics files are text files that contain the same execution information that the
Hexagon Performance Monitor Unit generates to support on-target performance tracking:

■ Instruction scheduling details

■ Bus access events

■ Cache access events

The statistics filename is determined by the --pmu_statsfile option (Section 3.3.13). The
default name is pmu_statsfile.txt.

For more information on the symbols used in PMU statistics files to represent Hexagon
processor execution events, see the Qualcomm Hexagon Programmer’s Reference Manual.

80-N2040-1786 Rev. AF 45

Qualcomm Hexagon Simulator User Guide Use the simulator

3.9 Packet statistics files
The simulator collects statistics on the instruction packets executed while an application is
running. When the application terminates, the simulator writes the collected statistics to a
packet statistics file.

Packet statistics files are text files that contain the following execution information for each
instruction packet:

■ Address – Packet start address (in virtual memory)

■ commits – Packet execution count

■ stalls – Packet stall counts (for each stall type)

■ bus – Bus access counts (for each access type)

The packet statistics file is enabled by the --packet_analyze option (Section 3.3.13).

Packet statistics files are written in JSON format, which can be read by Python or Perl scripts
(http://json.org/example). To postprocess the JSON file produced with the
--packet-analyze option, see the Hexagon Profiler User Guide (80-N2040-10).

The following code is an example of a single instruction packet entry from a packet statistics
file:

{ // beginning of file
 "0x000069bc": { // instruction packet address
 "commits": 12,
 "stalls": {
 "FE_NEWVALUE_MISPREDICT_CYCLES": 9,
 "IU_FETCH_CROSS_CYCLES": 3,
 "IU_HIT_CYCLES": 26,
 "DCACHE_DEMAND_MISS_CYCLES": 157,
 "TOTAL_STALLS": 195
 },
 "bus": {
 "AXI_READ_REQUEST": 1
 }
 }, // end of first packet
 // subsequent packets are listed here

Appendix A defines the symbols used in packet statistics files to represent the stall and bus
access event types.

NOTE: The packet entries in a packet statistics file are not sorted.

NOTE: The JSON format used in a packet statistics file will not change in the future. However,
additional metadata might be added to the file header, and additional attributes might
be added to individual packets.

http://json.org/example
http://json.org/example

80-N2040-1786 Rev. AF 46

4 Interfaces

This chapter describes the following interfaces provided with the simulator:

■ Timer interface (Section 4.1) – Used by a target application to collect execution statistics
on specific parts of its own code.

■ Cache interface (Section 4.2) – Used by a target application to maintain the processor
cache while it is being simulated.

■ Application programming interface (API) (Section 4.3) – Used by client programs to
control simulations without user input.

■ API callbacks (Section 4.4) – Set up and used via API calls.

Both the Timer interface and Cache interface are DSP domain utility libraries. They are to be
linked in when building the target ELF to be simulated. Their effects come from the
simulation.

The API operates in the host domain to make the simulator more versatile by customization.
Its effect is on the simulation host. If you do not plan to build a customized simulator, the
Simulator System API is irrelevant.

4.1 Timer interface
The simulator supports a built-in timer to enable users to collect execution statistics on
specific parts of the target application being simulated. The information is collected by
inserting timer function calls directly into the application source code.

The timer interface provides the following information:

■ Number of times the specified section of code was executed

■ Total number of cycles executed in the code section

■ Minimum, maximum, and average number of cycles executed during each pass through
the code section

■ Processor cycle count

■ Hardware thread processor cycle counts

The timer interface functions are accessed by including the library header file,
hexagon_sim_timer.h.

NOTE: To use the timer interface, an application must be linked with the library file,
libhexagon.a. For more information, see the appropriate application build document.

80-N2040-1786 Rev. AF 47

Qualcomm Hexagon Simulator User Guide Interfaces

4.1.1 Timer functions
The timer interface’s timer functions are used to get the number of cycles simulated while
executing specific sections of code in the target application. The following example shows
how the timer functions are used:

#include "hexagon_sim_timer.h"
...
main()
{
 hexagon_sim_init_timer();
 ...
 hexagon_sim_start_timer();

 <timed user code>;

 hexagon_sim_end_timer();
 ...
 hexagon_sim_show_timer(stdout);
}

The timer has the following properties:

■ Only one timer instance is supported for each application.

■ Timing information is collected cumulatively across multiple calls to
hexagon_sim_start_timer() and hexagon_sim_end_timer(). This enables the
timer functions to appear in loop code and still collect useful timing information.

The timer can be used to collect execution statistics on multiple parts of an application (each
delimited by hexagon_sim_start_timer() and hexagon_sim_end_timer()). However,
because only a single timer instance is supported for each application, the following
restrictions apply:

■ The timed parts of the application must be non-overlapping (and thus non-nested).

■ Each time the application transitions between the timed parts,
hexagon_sim_show_timer() and hexagon_sim_init_timer() must be called to
respectively capture the execution statistics from the previous part and reset the timer
for the next part.

80-N2040-1786 Rev. AF 48

Qualcomm Hexagon Simulator User Guide Interfaces

4.1.1.1 hexagon_sim_end_timer()

Stops the operation of the simulation timer.

Prototype

void hexagon_sim_end_timer();

Detailed description

The timer is assumed to have been previously started with
hexagon_sim_start_timer(). If hexagon_sim_end_timer() is called without a
matching call to hexagon_sim_start_timer(), the validity of the resulting timing
information) is undefined.

Timing information is collected cumulatively across multiple calls to
hexagon_sim_start_timer() and hexagon_sim_end_timer().
hexagon_sim_show_timer() is called to summarize and write the collected timing
information.

For a programming example, see Section 4.1.1.

NOTE: hexagon_sim_end_timer() is independent of the simulation timer, and it can be
called independently of the timer-related functions.

Returns

None.

4.1.1.2 hexagon_sim_init_timer()

Before calling the other timer functions, initializes (or resets) the simulation timer for
subsequent timer operations.

Prototype

void hexagon_sim_init_timer();

Detailed description

The sample count and all cycle counts are set to zero. For a programming example, see
Section 4.1.1.

Returns

None.

80-N2040-1786 Rev. AF 49

Qualcomm Hexagon Simulator User Guide Interfaces

4.1.1.3 hexagon_sim_prof_off()

Disables timer data collection even if the timer is started (hexagon_sim_show_timer()).

Prototype

void hexagon_sim_prof_off();

Detailed description

To re-enable timer data collection, call hexagon_sim_prof_on().

Returns

None.

4.1.1.4 hexagon_sim_prof_on()

Re-enables timer data collection after it was disabled using hexagon_sim_prof_off().

Prototype

void hexagon_sim_prof_on();

Returns

None.

80-N2040-1786 Rev. AF 50

Qualcomm Hexagon Simulator User Guide Interfaces

4.1.1.5 hexagon_sim_show_timer()

Summarizes the collected timer information and write it to the specified stream.

Prototype

void hexagon_sim_show_timer(FILE *file);

Parameters

Detailed description

This function summarize information collected so far by the timer, and then it writes the
corresponding execution statistics to the specified stream.

The summary includes the following information:

■ Number of times the section of code was executed (samples)

■ Total number of cycles executed in the code section

■ Minimum, maximum, and average number of cycles executed during each pass
through the code section

For example:
Samples=25
Total cycles=5691225
Max cycles=234223
Min cycles=211092
Avg cycles=227649

The code section is specified by calls to hexagon_sim_start_timer() and
hexagon_sim_end_timer().

For a programming example, see Section 4.1.1.

Returns

None.

in file Pointer to the file descriptor of an open stream to which
timer information is written.

80-N2040-1786 Rev. AF 51

Qualcomm Hexagon Simulator User Guide Interfaces

4.1.1.6 hexagon_sim_start_timer()

Starts the operation of the simulation timer.

Prototype

void hexagon_sim_start_timer();

Detailed description

The timer is assumed to have been previously initialized with
hexagon_sim_init_timer().

Timing information is collected cumulatively across multiple calls to
hexagon_sim_start_timer() and hexagon_sim_end_timer().

hexagon_sim_show_timer()is called to summarize and write the collected timing
information.

For a programming example, see Section 4.1.1.

Returns

None.

80-N2040-1786 Rev. AF 52

Qualcomm Hexagon Simulator User Guide Interfaces

4.1.2 Cycle count function
Cycle counts are defined as the number of cycles executed by the target application since it
first began executing.

The Hexagon processor has multiple hardware threads, each with a dedicated cycle count.
The cycle counts are not synchronized: when the processor cycle count increments, each of
the cycle counts may or may not increment, depending on whether the corresponding
hardware thread is currently in a wait state.

NOTE: The cycle count function, while part of the timer interface, is independent of the timer
and can be called independently of the timer-related functions.

Thread cycle counts are for hardware threads only—they have no relation to the software
threads supported by the RTOS. For accurate cycle counts on RTOS applications, use the RTOS
profiling services or the standalone tools hexagon-gprof and hexagon_profiler (both are part
of the standard Hexagon tools release).

4.1.2.1 hexagon_sim_read_pcycles()

Returns the total processor cycle count, which indicates the number of processor cycles
executed for all hardware threads on the Hexagon processor.

Prototype

unsigned long long hexagon_sim_read_pcycles();

Detailed description

The processor cycle count is reset to 0 after a processor reset.

The following example shows how hexagon_sim_read_pcycles() can be used to
determine the processor cycle count for a specific section of the application code:

start_cycles = hexagon_sim_read_pcycles();
<profiled user code>;
pcycle_count = hexagon_sim_read_pcycles() - start_cycles;

Returns

Processor cycle count.

80-N2040-1786 Rev. AF 53

Qualcomm Hexagon Simulator User Guide Interfaces

4.2 Cache interface
The simulator optionally models the Hexagon processor cache. In certain cases it is useful to
manage the cache data before performing an Angel call during simulation.

A target application uses the cache interface to manage the cache data during simulation.
The interface provides functions that wrap the processor cache maintenance instructions so a
single function call can perform the cache operation on a range of addresses. The interface
provides wrappers for the following cache maintenance instructions:
■ dccleana

■ dccleaninva

■ dcinva

The cache interface functions are accessed by including the library header file,
hexagon_cache.h. To use the cache interface, an application must be linked with the library
file, libhexagon.a. For more information, see the appropriate application build document.
For more information on the cache maintenance instructions, see the Qualcomm Hexagon
Programmer’s Reference Manual.

4.2.1 Cache functions
Use the cache interface functions to perform various combinations of flush and invalidate
operations on the specified cache data.

4.2.1.1 hexagon_buffer_clean()

Flushes dirty cache data in a specified address range.

Prototype

void hexagon_buffer_clean(const uint8_t *address,
 size_t nbytes);

Parameters

Detailed description

Issue a dccleana instruction for each cache line in the range specified by the input
parameters. This instruction looks up the data cache at the address. If the address is in
the cache and has dirty data, it flushes that data out to memory.

Returns

None.

in address Pointer to the starting address of the bytes to be flushed.

in nbytes Number of bytes to be flushed.

80-N2040-1786 Rev. AF 54

Qualcomm Hexagon Simulator User Guide Interfaces

4.2.1.2 hexagon_buffer_cleaninv()

Flushes dirty cache data and invalidates cache lines in a specified address range.

Prototype

void hexagon_buffer_cleaninv(const uint8_t *address,
 size_t nbytes);

Parameters

Detailed description

Issue a dccleaninva instruction for each cache line in the range specified by the input
parameters. This instruction looks up the data cache at the address. If this address is in
the cache and has dirty data, it flushes that data out to memory. The line is then
invalidated, whether or not any dirty data was written.

Returns

None.

4.2.1.3 hexagon_buffer_inv()

Invalidates cache lines in a specified address range.

Prototype

void hexagon_buffer_inv(const uint8_t *address,
 size_t nbytes);

Parameters

Detailed description

Issue a dcinva instruction for each cache line in the range specified by the input
parameters. This instruction looks up the data cache at the address. If this address is in
the cache, it is invalidated.

Returns

None.

in address Pointer to the starting address of the bytes to be flushed.

in nbytes Number of bytes to be flushed.

in address Pointer to the starting address of the bytes to be flushed.

in nbytes Number of bytes to be flushed.

80-N2040-1786 Rev. AF 55

Qualcomm Hexagon Simulator User Guide Interfaces

4.3 Simulator System API
The simulator supports an API that clients can use to enable client program control of a
Hexagon simulation. The API is used to perform co-simulation of the Hexagon processor with
external devices and with higher-level system simulations.

The simulator is designed as a library that can be dynamically loaded by a system simulator. It
supports two simulation modes:

■ Standalone simulation (as hexagon-sim)

■ Simulation as part of a larger system simulation environment.

The simulator library exports functions that can be called by the system simulation
environment. This API supports simulation configuration as well as simulation control.

The simulator library additionally supports the loading of co-simulation models and
communication with them through a dedicated API.

4.3.1 Simulator components

Figure 4-1 Simulator components used in standalone and system simulations

hexagon-sim is a command used to execute standalone simulations from a command line
interface. The command arguments specify the simulation environment.

system-sim represents a host program that invokes a Hexagon simulation as part of a larger
system simulation environment.

The Hexagon constructor (named HexagonWrapper) is used in both standalone and system
simulations to create and configure instances of the Hexagon simulator.

The Hexagon simulation engine is invoked by the constructor to perform the simulation.

COSIM is a co-simulation module that models one or more devices external to the Hexagon
processor. Co-simulations communicate with the simulation engine through the simulator
API.

HexagonWrapper

Hexagon Simulation Engine

hexagon -sim args COSIM system-sim

80-N2040-1786 Rev. AF 56

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.2 Invoke simulator in Standalone mode
In Standalone mode, the simulator is configured using command-line options.

hexagon-sim [options] executable

This executable is analogous to a system simulation environment where the target platform
consists of only the Hexagon core. The hexagon-sim executable uses the simulator API to
simulate the operation of the Hexagon core. An overview of the API functionality is provided
below.

The command-line options are first parsed by hexagon-sim to determine the specific
Hexagon processor version that is being requested to be simulated. This is determined by
either the existence of an option specifically stating the version to use (such as -mv62) or, if
not explicitly stated, the processor version is determined by examining the provided
executable. In the latter case, the version is set to match the executable.

hexagon-sim first creates an instance of the HexagonWrapper class (Section 4.3.6) with the
specified processor version, and then calls the configuration member functions
(Section 4.3.8) based on the command-line arguments passed to it.

After configuration, the simulator either runs until the program terminates, or passes control
to a debugger. In debug mode, the simulator can be run either in interactive mode or with a
debugger like TRACE32 or GDB.

The following pseudo-code describes the functionality of hexagon-sim.
#include "HexagonTypes.h"
#include "HexagonWrapper.h"
main(int argc, char** argv)
{
 HEXAPI_Cpu main_arch_type;
 HexagonWrapper *hex;

 main_arch_type = findArch(argc, argv); // bail if invalid

 // Load architecture specific library based on command line
 // option and/or binary image. Put files in current dir
 hex = new HexagonWrapper(main_arch_type);

 // Call configuration methods based on command-line
 // options passed to the simulator

 ConfigureOptions(argc, argv);

if (InteractiveModeRequested)
 { start interactive mode }
 else
 { load image and run }
}

80-N2040-1786 Rev. AF 57

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.3 Invoke simulator in System Simulation mode
This section describes the API calls for working with the Hexagon simulator in a System
Simulation mode.

Each processor version of the Hexagon core has its own simulator library (which is named
either libhexagonissv<x>.so or libhexagonissv<x>.dll). This library is located at
$(hexagon_TOOLS_INSTALL_DIR)/Tools/lib/iss.

The HexagonWrapper class (libwrapper.a) is statically linked to the system simulation
application that wishes to instantiate a Hexagon core. This wrapper class knows where to find
the library to load for the specified simulator by using one of the following methods:

■ The loader’s environment variable setting (PATH on Windows, LD_LIBRARY_PATH on
Linux)

■ Linking the application using a specific path to the linker (the -rpath option of ld)

■ Relative to the path of the hexagon-sim executable (when using hexagon-sim)

The processor version type provided to the HexagonWrapper constructor determines which
library is loaded.

For example, if the environment variable points to the library to load, the compile line would
look like this:

g++ -o sys_sym sys_sym.c
 -I$(HEXAGON_TOOLS_INSTALL_DIR)/Tools/include/iss
 -L$(HEXAGON_TOOLS_INSTALL_DIR)/Tools/lib/iss -lwrapper

The environment variable is set to:
$(HEXAGON_TOOLS_INSTALL_DIR)/Tools/lib/iss

To dynamically bind the simulator library, the runtime link path can be hard-coded into the
binary as follows:

g++ -o sys_sym sys_main.c
 -Wl,-rpath,$(HEXAGON_TOOLS_INSTALL_DIR)/Tools/lib/iss -lwrapper

When hexagon-sim is invoked from the command line, the library path is determined,
relative to the path from where hexagon-sim was installed.

80-N2040-1786 Rev. AF 58

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.4 File handling
All simulator API functions that deal with paths or filenames make the following assumptions:

■ The user has the correct file permissions

■ The entity specified by a name string has the same type as what is expected by the
specification

Thus, if an API function requires a string whose content describes a path (directory), the
referenced directory must exist and have the correct permissions. If the string describes a file,
the API assumes it is in the correct format for the platform (C:\... or /usr/...) and it exists
with the correct permissions, or, in the case of a simulator-created file, the directory in which
the file is to be created exists and has permissions that allow the file to be created.

An enumerated type (HEXAPI_OpenMode) is optionally passed along with filenames that
directs the simulator to open the specific file in a way specified by the caller. This allows, for
instance, concatenation of trace results from different portions of the simulation into a single
file. Each API specifies what the simulator uses by default as the open mode.

NOTE: Opening files with HEX_MODE_WRITE or HEX_MODE_WRITEBINARY overwrites any
existing data in the file.

The configuration APIs only check the validity of the specified files, but not the validity of any
file content. A configure command might succeed, but it will return an error later in
simulation. For instance, ConfigureCosim() accepts the name of a configuration file. The
cosim configuration file contains names of cosim libraries to load. If one of the cosim library
names is invalid, the ConfigureCosim() function succeeds, but an error is generated later.

The simulator maintains open file handles for each file specified and does not close files until
the HexagonWrapper destructor is called (typically by deleting the instance). Reading or
writing these files before the HexagonWrapper instance is deleted gives unpredictable
results.

80-N2040-1786 Rev. AF 59

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.5 Status results
Most simulator API functions return a function result value indicating the result of the
operation.

The API defines a standard set of symbols (of type HEXAPI_Status) for the result values, as
shown in the following table.

NOTE: The Run() API function returns a function-specific result value of type
HEXAPI_CoreState.

Table 4-1 API status results

Symbol Description
HEX_STAT_SUCCESS Success

HEX_STAT_ERROR Error

HEX_STAT_RANGE_ERROR Incorrect range

HEX_STAT_INVALID_ARGS Invalid arguments

HEX_STAT_CANNOT_CONFIG Cannot configure simulator

HEX_STAT_CANNOT_TRANSLATE No translation for specified vaddr exists

HEX_STAT_FILE_ACCESS_ERROR File access error

HEX_STAT_MEM_ACCESS_ERROR Cannot access memory

HEX_STAT_DEVICE_NOT_FOUND Cannot find registered bus device

HEX_STAT_NO_ACTIVE_THREADS No threads active

HEX_STAT_LOAD_ELF_ERROR Error in loading ELF binary for Hexagon

80-N2040-1786 Rev. AF 60

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.6 Simulator constructor (HexagonWrapper)
Creates an instance of the simulator for use as a handle for driving the Hexagon simulation.
This handle can be further configured according to the target system configuration.

Prototype

HexagonWrapper(HEXAPI_Cpu cpu_ver);

Parameters

Detailed description

Tracing, profiling, or remote debugging features can be enabled by calling configuration
functions on the handle.

A simulator instance handle can be used as a client by a system scheduler, and it can be
made to run for a specified number of cycles. Cosims to model external devices can be
constructed and plugged in as clients to the simulator library.

NOTE: Not all of the processor versions are supported in a specific Hexagon tools release.
For more information, see Chapter 3.

Hexagon V55 and later processors have many cpu_ver values defined for their various
micro-architectures. These values are not listed above. To determine them:

❒ Use the -help option in hexagon-sim to list the -mv<x> processor version options
defined in the simulator.

❒ Then construct the necessary cpu_ver value using the pattern HEX_CPU_VXX_YY,
where XX indicates the processor version and micro-architecture, and YY indicates
the sum of the L2 cache and TCM sizes.

For example, hexagon-sim -h -mv62 will show all revision IDs for V62 supported in
this hexagon-sim instance. Hexagon-sim instances from different Hexagon tools release
might show different revision IDs.

NOTE: Instead of -help, you can also use the rev_id values listed in
$(hexagon_TOOLS_INSTALL_DIR)/include/iss/HexagonTypes.h as a source.

in cpu_ver Hexagon processor version.
■ HEX_CPU_V62
■ HEX_CPU_V65
■ HEX_CPU_V66
■ HEX_CPU_V67
■ HEX_CPU_V67T
■ HEX_CPU_V68
■ HEX_CPU_V69
■ HEX_CPU_V71
■ HEX_CPU_V7T
■ HEX_CPU_V73

80-N2040-1786 Rev. AF 61

Qualcomm Hexagon Simulator User Guide Interfaces

Usage

The following example shows how to use the constructor to create and configure an
instance of the simulator for use as a handle for driving the Hexagon simulation.
#include "HexagonWrapper.h" // defines enum HEXAPI_Cpu

sys_main()
{
 // instantiate HEXAGON wrapper
 HexagonWrapper *dsp = new HexagonWrapper(HEX_CPU_V62);
 HEX_4u_t actualCyc = 0;
 HEX_4u_t simRC;
 HEXAPI_CoreState runstate;

 // Configure DSP
 dsp->ConfigureTCM(0xD8000000); // if you intend to use TCM
 dsp->ConfigureExecutableBinary(“bootimg.pbn”);
 // configure cosim here
 dsp->EndOfConfiguration(); // after all pre-run configuration

 // Run DSP

 // Most users intend to run straight through the entire program
 runstate = dsp->Run(&simRC);

 // if "runstate" is HEX_CORE_FINISHED
 // "simRC" will contain the return value of the user main()
 // of the simulated program. However, most usage scenarios
 // focus on side effects and ignore the return value.

 // To simulate a program in repeated short segments, do this:
 while (...)
 {
 // run for at most 100 pcycles at a time
 runstate = dsp->Step(100, &actualCyc, &simRC);

 // check various states and decide whether to exit loop
 ...
 }
}

NOTE: The function calls described in the following sections are public methods of the
HexagonWrapper class.

80-N2040-1786 Rev. AF 62

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.7 Co-simulation
A co-simulation is a software module that models one or more devices external to the
Hexagon processor. It executes in parallel with the Hexagon simulator, and it communicates
with the simulator through the simulator API.

One use for co-simulations is the creation of specialized monitoring components.

NOTE: Co-simulations must be written as single-threaded modules. Although you can use a
cosim as a multi-threaded module, QTI does not supported it because the simulator
library and l2vic/qtimer cosim are not qualified for multi-thread operations.

4.3.7.1 Build co-simulations

Co-simulations are built as shared objects or dynamically-loaded libraries. They have the
following build requirements.

Windows requirements

■ Supports Microsoft Visual Studio 2010 or later

■ Must specify DLL file, libhexagonissv<x>.dll

■ Must specify /dll option

For example:
link.exe vcodec.o /dll libhexagonissv<x>.dll /libpath:c:\hexagon\
Tools\lib\iss /out:vcodec.dll;

Linux requirements

■ Object files must be compiled with -fPIC option

■ No need to specify file, libhexagonissv<x>.so

■ Must use -shared option when linking

For example:
 g++ -c -fPIC vcodec.cpp -o vcodec.o;
 g++ -shared -o vcodec.so vcodec.o;

80-N2040-1786 Rev. AF 63

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.7.2 Execute co-simulations

Co-simulations are executed by being specified as arguments to the Hexagon simulator:

■ The simulator command option --cosim_file is used to specify the co-simulations for a
standalone simulation. (For more information, see Chapter 3.)

■ The simulator API function, ConfigureCosim(), is used to specify the co-simulations for
a system simulation.

--cosim_file and ConfigureCosim() both accept the pathname of a text file as an
argument. The specified text file contains a list of pathnames that in turn specify the
co-simulator library files.

NOTE: While it is possible to set up environment variables so the path is not specified, it is
usually better for the cosim specification file to use the full path to identify the cosim
module.

Arguments can be passed to a co-simulation by optionally specifying them after the
corresponding co-simulator library filename.

For example:
/user/me/mycosim/path/cosim1.so arg1 arg2 - Linux
/user/me/mycosim/path/cosim2.so

C:\cosims\cosim1.dll arg1 arg2 - Windows
C:\cosims\cosim2.dll

80-N2040-1786 Rev. AF 64

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8 Simulator configuration
The HexagonWrapper class member functions, which are described in this section, are used
to configure the Hexagon simulator library. All the configuration functions have to be called
before calling the runtime simulator functions or the simulator control functions.

NOTE: Simulator configuration applies to system simulations only—it does not apply to
co-simulation modules (Section 4.3.7).

Unless otherwise noted, if a configuration function of a certain type is called multiple times,
the last configuration overrides the previous setting for that configuration.

All filenames referred to as parameters must be in the correct form for the platform expected
to be run on. Essentially, the passed-in string must be able to be passed as-is to the fopen()
system call.

4.3.8.1 ConfigureRemoteDebug()

Specifies TCP/IP socket that the simulator will write status information to during the
simulation.

Prototype

HEXAPI_Status ConfigureRemoteDebug(HEX_4u_t portNum);

Parameters

Detailed description

The socket is specified as an integer value.

This function is analogous to the --gdbserv (-G) option in hexagon-sim.

NOTE: The debugger connection will be made only when Run()is called.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid port number.

in portNum Assign a TCP port number that the simulator listens on for
remote debugging.
The debugger (hexagon-gdb OR Trace32 with MCD)
attaches to this port. (portNum > 1024)

80-N2040-1786 Rev. AF 65

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.2 ConfigureCosim()

Plugs one or more external cosims into the simulator.

Prototype

HEXAPI_Status ConfigureCosim(const char *pCosimConfigFile,
 HEXAPI_OpenMode mode=HEX_MODE_READ);

Parameters

Detailed description

A cosim can register to get callbacks for memory reads/writes, bus accesses, PC execution
events, and time-based events. Multiple cosims can be specified and are listed on
separate lines of the configuration file.

This function is analogous to the --cosim_file option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – File access error.

Example

Cosim configuration file content:
/local/Hexagon_tools_install/Tools/lib/iss/timer.so 32000 0xAB000000 2
/local/Hexagon_tools_install/Tools/lib/iss/timer.so 19200000 0xAB004000 3
/local/MM_cosim/ebi_bus.so 0x100000

in pCosimConfigFile Pointer to the configuration file for the cosims.
The configuration file contains path to cosim libraries,
followed by (optional) arguments to the cosims. This
string should contain the fully qualified name of the
configuration file.

in mode Open mode for the file.
■ HEX_MODE_READ (default) – Reading (Text mode)
■ HEX_MODE_READBINARY – Reading a binary file

(not recommended)

80-N2040-1786 Rev. AF 66

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.3 ConfigureOSAwareness()

Plugs an OS Awareness module into the simulator.

Prototype

HEXAPI_Status ConfigureOSAwareness(
 const char *pOsamConfigFile,
 HEXAPI_OpenMode mode=HEX_MODE_READ);

Parameters

Detailed description

The OS Awareness module can register callbacks for the following:

■ The debugger, to obtain software thread state, mutex information, and so on

■ PC execution events

■ Virtual-to-physical translation for servicing Angel calls (semi-hosting)

This function is analogous to the -rtos option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – File access error.

in pOsamConfigFile Pointer to the fully qualified name of the configuration file
for the OS Awareness module.
This file contains the complete path to the OS Awareness
module shared object or DLL. The string should contain
the fully qualified name of the configuration file.

in mode Open mode for the file.
■ HEX_MODE_READ (default) – Reading (Text mode)
■ HEX_MODE_READBINARY – Reading a binary file

(not recommended)

80-N2040-1786 Rev. AF 67

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.4 ConfigureExecutableBinary()

Specifies the binary file that is to be loaded into the Hexagon simulator for simulation.

Prototype

HEXAPI_Status ConfigureExecutableBinary(const char *pElfFile);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – File access error.

in pElfFile Pointer to the fully qualified name of the binary Hexagon
ELF file of the program to be simulated.
This file is opened using HEX_MODE_READBINARY mode.

80-N2040-1786 Rev. AF 68

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.5 ConfigureAppCommandLine()

Allows command line arguments to be passed to the simulated program.

Prototype

HEXAPI_Status ConfigureAppComandLine(int argc, char **argv);

Parameters

Detailed description

The command line arguments are used to pass arguments to the simulated application.

When individual arguments contain whitespace separators, the argument vector must
include the escape character, "\"" , at the front and end of the string to preserve the
interpretation of the argument. For example, my_argv[3]="\"Hexagon Core\"".

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid port number.

Example

hexagon-sim --timing jpeg.exe ---o pic.ppm -i pic.jpg

The command line to be passed to the simulated application:
jpeg.exe -o pic.ppm -i pic.jpg

in argc Number of arguments in the command line.

in argv Double pointer to an array of strings.

80-N2040-1786 Rev. AF 69

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.6 ConfigureSimStdin()

Configures standard input of the simulated program.

Prototype

HEXAPI_Status ConfigureSimStdin(const char *pStdin,
 HEXAPI_OpenMode mode=HEX_MODE_READ);

Parameters

Detailed description

Any read operation by the simulated program that specifies stdin explicitly or implicitly
gets its input from the file associated with the pStdin file.

Passing a NULL value in the pStdin file will revert to stdin of the calling process.

This function is analogous to the --sim_in option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – File access error.

in pStdin Pointer to the fully qualified name of the file whose
contents are to be used as standard input of the simulated
program.
The default value is the STDIN of the host platform.

in mode Open mode for the file
■ HEX_MODE_READ (default) – Reading (Text mode)
■ HEX_MODE_READBINARY – Reading a binary file

80-N2040-1786 Rev. AF 70

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.7 ConfigureSimStdout()

Configures standard output of the simulated program.

Prototype

HEXAPI_Status ConfigureSimStdout(
 const char *pStdout,
 HEXAPI_OpenMode mode=HEX_MODE_WRITE);

Parameters

Detailed description

Any write operation by the simulated program that specifies stdout explicitly or
implicitly writes its output to the file associated with the pStdout file.

Passing a NULL value in the pStdout file will revert to stdout of the calling process.

This function is analogous to the --sim_out option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – File access error.

in pStdout Pointer to the fully qualified name of the file whose
contents are to be used as standard output of the
simulated program.
The default value is STDOUT of the host platform.

in mode Open mode for the file.
■ HEX_MODE_WRITE (default) – Create for writing;

Text mode
■ HEX_MODE_WRITEBINARY – Create binary file for

writing
■ HEX_MODE_APPEND – Append text
■ HEX_MODE_APPENDBINARY – Append binary data

80-N2040-1786 Rev. AF 71

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.8 ConfigureSimStderr()

Prototype

HEXAPI_Status ConfigureSimStderr(
 const char *pStderr,
 HEXAPI_OpenMode mode=HEX_MODE_WRITE);

Parameters

Detailed description

Configures the standard error output of the simulated program. Any write operation by
the simulated program that specifies stderr explicitly or implicitly writes its output to
the file associated with the pStderr file.

Passing a NULL value in the pStderr file will revert to stderr of the calling process.

This function is analogous to the --sim_err option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – File access error.

in pStderr Pointer to the fully qualified name of the file whose
contents are to be used as standard error output of the
simulated program.
The default value is STDERR of the host platform.

in mode Open mode for the file
■ HEX_MODE_WRITE (default) – Create for writing;

Text mode
■ HEX_MODE_WRITEBINARY – Create binary file for

writing
■ HEX_MODE_APPEND – Append text
■ HEX_MODE_APPENDBINARY – Append binary data

80-N2040-1786 Rev. AF 72

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.9 ConfigureCoreFrequency()

Specifies the simulated processor clock speed (in Hertz).

Prototype

HEXAPI_Status ConfigureCoreFrequency(HEX_8u_t ClkHz);

Parameters

Detailed description

The clock speed is specified as an integer value. It determines the ratio of simulated to
real time.

The default clock speed is platform-specific.

This function is like the --dsp_clock option in hexagon-sim, except that the function
argument is expressed in Hz while the option argument is expressed in MHz.

NOTE: If you intend to convert cycle counts to simulated execution times, QTI recommends
explicitly specifying a clock speed and not depending on the default values.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Frequency out of range.

in ClkHz Hexagon clock frequency in Hertz.

80-N2040-1786 Rev. AF 73

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.10 ConfigureTimingMode()

Enables or disables timing mode.

Prototype

HEXAPI_Status ConfigureTimingMode(HEXAPI_TimingMode mode);

Parameters

Detailed description

This function enables or disables cache and core pipeline stall modeling. Correct external
bus behavior is guaranteed only when timing mode is enabled.

PMU statistics are generated correctly for all events only when timing mode is enabled.
Otherwise, when timing mode is disabled, statistics will be correctly generated for some
but not all of the events.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in mode Timing mode.
■ HEX_NOTIMING – Disable timing mode (default)
■ HEX_TIMING – Enable timing mode with data-backed

data caches
■ HEX_TIMING_NODBC – Enable timing mode without

data-backed data caches

80-N2040-1786 Rev. AF 74

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.11 ConfigureBypassIdle()

Skips the execution of pcycles while the processor is idle because all hardware threads are in
Wait or Off mode.

Prototype

HEXAPI_Status ConfigureBypassIdle(bool enable);

Parameters

Detailed description

This function speeds up the simulation when the processor is idle for a significant amount
of time.

If the number of skipped cycles is nonzero, the value returned by
GetSimulatedCycleCount() includes the number of cycles spent while the processor is
idle in this way.

This function is analogous to the --bypass_idle option in hexagon-sim.

By default, this function is disabled (FALSE) for all architectures. Setting it to TRUE can
accelerate programs with the DSP frequently in Idle mode, but using it will slow down
programs that rarely have the DSP in Idle mode.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in enable Profile mode.
■ TRUE – Enable idle modeling
■ FALSE – Disable idle modeling (default)

80-N2040-1786 Rev. AF 75

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.12 ConfigureAHB()

Specifies the address decode range destined for the AHB bus interface.

Prototype

HEXAPI_Status ConfigureAHB(HEX_PA_t AHBStartAddr,
 HEX_PA_t AHBEndAddr);

Parameters

Detailed description

When Timing mode is switched ON, bus transactions with addresses within the provided
AHB range are routed to the AHB controller. In Standalone mode, this function causes all
memory accesses in the specified range to be routed to an internal bus controller that
completes the transaction with a specific delay. This delay can be overridden by the
--ahbbuspenalty option in hexagon-sim or by specifying a timed delay using
ConfigureAHBBusPenalty().

Additionally, the Hexagon simulator models the bus unit queuing mechanism correctly
for Hexagon V6x processors.

All memory transactions outside the given range are routed to an internal AXI bus
controller, which also delays the completion of bus requests by the same amount given
for the AHB delay.

Bus transactions can be intercepted by writing a cosim model and registering to receive
callbacks for bus transactions to a specified memory range (see
AddBusAccessCallback()). The bus transactions (which can be performed using any
algorithm) are completed by calling the BusTransactionFinished() method of the
HexagonWrapper class.

This function is analogous to the --ahb option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_RANGE_ERROR – Incorrect range.

in AHBStartAddr Starting address of the AHB decode range (inclusive).

in AHBEndAddr Ending address of the AHB decode range (inclusive).

80-N2040-1786 Rev. AF 76

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.13 ConfigureAXI2()

Specifies the address decode range destined for the AXI2 bus interface.

Prototype

HEXAPI_Status ConfigureAXI2(HEX_PA_t AXI2StartAddr,
 HEX_PA_t AXI2EndAddr);

Parameters

Detailed description

When Timing mode is switched ON, bus transactions with addresses within the provided
AXI2 range are routed to the AXI2 controller. In Standalone mode, this function causes all
memory accesses in the specified range to be routed to an internal bus controller that
completes the transaction with a specific delay. This delay can be overridden by the
--axi2buspenalty option in hexagon-sim or by specifying a timed delay using
ConfigureBusPenalty().

Also, the Hexagon simulator models the bus unit queuing mechanism correctly for
Hexagon V6x processors.

All memory transactions outside the given range are routed to an internal AXI bus
controller, which also delays the completion of bus requests by the same amount given
for the AXI2 delay.

Bus transactions can be intercepted by writing a cosim model and registering to receive
callbacks for bus transactions to a specified memory range (see
AddBusAccessCallback()). The bus transactions (which can be performed using any
algorithm) are completed by calling the BusTransactionFinished() method of the
HexagonWrapper class.

This function is analogous to the --axi2 option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_RANGE_ERROR – Incorrect range.

■ HEX_STAT_ERROR – Invalid processor version.

in AXI2StartAddr Starting address of the AXI2 decode range (inclusive).

in AXI2EndAddr Ending address of the AXI2 decode range (inclusive).

80-N2040-1786 Rev. AF 77

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.14 ConfigureBusRatio()

Specifies the AXI (main) bus clock rate as a non-fractional ratio of the processor clock.

Prototype

HEXAPI_Status ConfigureBusRatio(HEX_4u_t busRatio);

Parameters

Detailed description

If the ratio is set to 1, a bus cycle is defined to equal a pcycle. If the ratio is set to 2, a bus
cycle is defined to be twice as long as a pcycle (and so on). For example, if the processor
runs at 600 MHz and the ratio is 3, the bus runs at 200 MHz.

This function is analogous to the --busratio option in hexagon-sim.

NOTE: To convert cycle counts to simulated execution times, QTI recommends explicitly
specifying the AXI bus ratio and not depending on the default values.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Processor does not support this function.

in busRatio Ratio of the AXI (main) bus clock to the processor clock.
Default value: 2

80-N2040-1786 Rev. AF 78

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.15 ConfigureAHBBusRatio()

Specifies the AHB bus clock rate as a non-fractional ratio of the processor clock.

Prototype

HEXAPI_Status ConfigureAHBBusRatio(HEX_4u_t busRatio);

Parameters

Detailed description

This function is analogous to the --ahbbusratio option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Processor does not support this function.

4.3.8.16 ConfigureAXI2BusRatio()

Specifies the AXI2 bus clock rate as a non-fractional ratio of the processor clock.

Prototype

HEXAPI_Status ConfigureAXI2BusRatio(HEX_4u_t busRatio);

Parameters

Detailed description

This function is analogous to the --axi2busratio option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Processor does not support this function.

in busRatio Ratio of AHB bus clock to processor clock.
Default value: 2

in busRatio Ratio of the AXI2 bus clock to the processor clock.
Default value: 2

80-N2040-1786 Rev. AF 79

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.17 ConfigureBusPenalty()

Configures the default latency for AXI (main) bus accesses across the entire memory range.

Prototype

HEXAPI_Status ConfigureBusPenalty(HEX_8u_t BusPenaltyInterval,
 HEXAPI_Interval units);

Parameters

Detailed description

This latency can be overridden by connecting a bus cosim for appropriate address ranges.
The latency is determined by the core clock frequency and simulates real time as if the
core were running at the specified frequency. There is no direct relation to real time
(wall-clock time).

The granularity of the time increment is bounded by the current core frequency setting.
The finest granularity available corresponds to the time taken by a single processor cycle.
All time values are scaled according to the current processor clock frequency and are
rescaled if the core frequency changes.

This function is like the --buspenalty option in hexagon-sim, except that the function
accepts a time value while the option accepts a cycle count.

For Hexagon V5 and later processors, the bus is simulated at its own frequency, as
determined by the ConfigureCoreFrequency() and ConfigureBusRatio() settings.

If units = HEX_PCYCLE, the busRatio and busPenalty parameters are ignored for the
registered callback. Use this option with care.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Incorrect parameters.

in BusPenaltyInterval AXI (main) bus penalty in simulation real-time units.

in units Units that represent the BusPenaltyInterval parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds
■ HEX_PCYCLE – Pcycles

80-N2040-1786 Rev. AF 80

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.18 ConfigureAHBBusPenalty()

Configures the default latency for AHB bus accesses across the entire memory range.

Prototype

HEXAPI_Status ConfigureAHBBusPenalty(
 HEX_8u_t BusPenaltyInterval,
 HEXAPI_Interval units);

Parameters

Detailed description

This latency can be overridden by connecting a bus cosim for the appropriate address
ranges. The latency is determined by the core clock frequency and simulates real time as
if the core were running at the specified frequency. There is no direct relation to real time
(wall-clock time).

The granularity of the time increment is bounded by the current core frequency setting.
The finest granularity available corresponds to the time taken by a single processor cycle.
All time values are scaled according to the current processor clock frequency and are
rescaled if the core frequency changes.

This function is like the --ahbbuspenalty option in hexagon-sim, except that the
function accepts a time value while the option accepts a cycle count.

For Hexagon V5 and later processors, the bus is simulated at its own frequency, as
determined by the ConfigureCoreFrequency() and ConfigureAHBBusRatio()
settings.

NOTE: To specify the bus penalty in terms of cycles, contact Hexagon technical support for
assistance.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Incorrect parameters.

in BusPenaltyInterval AHB bus penalty in simulation real-time units.

in units Units that represent the BusPenaltyInterval parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

80-N2040-1786 Rev. AF 81

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.19 ConfigureAXI2BusPenalty()

Configures the default latency for AXI2 bus accesses across the entire memory range.

Prototype

HEXAPI_Status ConfigureAXI2BusPenalty(
 HEX_8u_t BusPenaltyInterval,
 HEXAPI_Interval units);

Parameters

Detailed description

This latency can be overridden by connecting a bus cosim for the appropriate address
ranges. The latency is determined by the core clock frequency and simulates real time as
if the core were running at the specified frequency. There is no direct relation to real time
(wall-clock time).

The granularity of the time increment is bounded by the current core frequency setting.
The finest granularity available corresponds to the time taken by a single processor cycle.
All time values are scaled according to the current processor clock frequency and are
rescaled if the core frequency changes.

This function is like the --axi2buspenalty option in hexagon-sim, except that the
function accepts a time value while the option accepts a cycle count.

For Hexagon V5 and later processors, the bus is simulated at its own frequency, as
determined by the ConfigureCoreFrequency() and ConfigureAXI2BusRatio()
settings.

NOTE: To specify the bus penalty in terms of cycles, contact Hexagon technical support for
assistance.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Incorrect parameters.

in BusPenaltyInterval AXI2 bus penalty in simulation real-time units.

in units Units that represent the BusPenaltyInterval parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

80-N2040-1786 Rev. AF 82

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.20 ConfigureTCM()

Specifies the start of TCM.

Prototype

HEXAPI_Status ConfigureTCM(HEX_PA_t TCMStartAddr);

Parameters

Detailed description

The size of TCM is determined by the specific Hexagon processor version, micro-
architecture, and L2 cache configuration. When Timing mode is switched ON, within the
TCM range do not result in external bus transactions. The latency of TCM is accurately
modeled for the given processor version.

This function is analogous to the --tcm:lowaddr options in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid address. This error is issued when the start
address plus the TCM size overflows the address space.

in TCMStartAddr Starting address of the TCM decode range.

80-N2040-1786 Rev. AF 83

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.21 ConfigureSubsystemBase()

Specifies the subsystem base address value that is stored in the configuration table
referenced by the Hexagon system-level register CFGBASE.

NOTE: This function is supported only for the Hexagon Tools 7.x and later releases.

Prototype

HEXAPI_Status ConfigureSubsystemBase(HEX_4u_t subStart);

Parameters

Detailed description

The base address value specifies bits [35:16] of a 36-bit physical memory address. Bits
[15:0] are assumed to be 0.

This function is analogous to the --subsystem_base option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in subStart Address value of the CFGBASE subsystem base.

80-N2040-1786 Rev. AF 84

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.22 ConfigureL2tcmBase()

Specifies the L2 TCM base address value that is stored in the configuration table referenced
by the Hexagon system-level register CFGBASE.

NOTE: This function is supported only for the Hexagon Tools 7.x and later releases.

Prototype

HEXAPI_Status ConfigureL2tcmBase(HEX_4u_t l2tcmStart);

Parameters

Detailed description

The base address value specifies bits [35:16] of a 36-bit physical memory address. Bits
[15:0] are assumed to be 0.

This function is analogous to the --l2tcm_base option in hexagon-sim.

If this function is not called, the simulator assigns the L2 TCM base address a default value
that is internally determined.

The simulator sets the value of the CFGBASE register itself to (l2tcmStart + 0x18),
where 0x18 denotes 0x180000 in the physical address space.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in l2tcmStart Address value of the CFGBASE L2 TCM base.

80-N2040-1786 Rev. AF 85

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.23 ConfigureL2cfgBase()

Specifies the L2 configuration base address value that is stored in the configuration table
referenced by the Hexagon system-level register CFGBASE.

NOTE: This function is supported only for the Hexagon Tools 7.x and later releases.

Prototype

HEXAPI_Status ConfigureL2cfgBase(HEX_4u_t l2cfgStart);

Parameters

Detailed description

The base address value specifies bits [35:16] of a 36-bit physical memory address. Bits
[15:0] are assumed to be 0.

This function is analogous to the --l2cfg_base option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in l2cfgStart Address value of the CFGBASE L2 configuration base.

80-N2040-1786 Rev. AF 86

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.24 ConfigureEtmcfgBase()

Specifies the ETM base address value that is stored in the configuration table referenced by
the Hexagon system-level register CFGBASE.

NOTE: This function is supported only for the Hexagon Tools 7.x and later releases.

Prototype

HEXAPI_Status ConfigureEtmcfgBase(HEX_4u_t etmStart);

Parameters

Detailed description

The base address value specifies bits [35:16] of a 36-bit physical memory address. Bits
[15:0] are assumed to be 0.

This function is analogous to the --etm_base option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in etmStart Address value of the CFGBASE ETM base.

80-N2040-1786 Rev. AF 87

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.25 ConfigureMemFill()

Specifies a value to be used for all uninitialized memory.

Prototype

HEXAPI_Status ConfigureMemFill(HEX_1u_t value);

Parameters

Detailed description

The simulator fills all of memory with the specified value before simulation starts.

This function is analogous to the --memfill option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in value One-byte value used to fill all of memory (that is, the initial
value of uninitialized memory).
Default: 0x1F

80-N2040-1786 Rev. AF 88

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.26 ConfigureMemFillRandom()

Specifies a value to be used as a random number seed.

Prototype

HEXAPI_Status ConfigureMemFillRandom(HEX_4u_t seed);

Parameters

Detailed description

The simulator uses the rand() host function to initialize values for all uninitialized
memory. The behavior of this function depends on the host implementation of the
random number generator.

This function is analogous to the --memfill_rand option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in seed Value used to seed the random number generator for
memory fill operations.
The simulator fills all of memory (that is, the initial value of
uninitialized memory) with random numbers using the
rand() function of the host platform.

80-N2040-1786 Rev. AF 89

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.27 ConfigureNULLPointerBehavior()

Instructs the simulator on how NULL pointer dereferences should be handled.

Prototype

HEXAPI_Status ConfigureNULLPointerBehavior(HEXAPI_Nullptr behavior);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

4.3.8.28 ConfigureCoreDump()

Generates a binary core dump file when the target application is terminated after generating
an exception.

Prototype

HEXAPI_Status ConfigureCoreDump(const char *filename);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

NOTE: This function returns HEX_STAT_SUCCESS even if the simulator is unable to
subsequently create the core dump file.

in behavior Describes how the simulator should handle NULL pointer
dereferences.
■ HEX_NULLPTR_IGNORE – No warnings
■ HEX_NULLPTR_WARN – Issue a warning (default)
■ HEX_NULLPTR_FATAL – Terminate simulation after a

warning message

in filename Pointer to the fully qualified name of the core dump file
generated by the simulator.

80-N2040-1786 Rev. AF 90

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.29 ConfigureGProf()

Configures the data dump for the GNU profiler.

Prototype

HEXAPI_Status ConfigureGProf(const char *gprofPath=NULL);

Parameters

Detailed description

For details, see Chapter 3.

The profiling files are created in the specified directory. If a NULL directory is supplied,
the files are created in the current working directory. The simulator overwrites existing
files without warning.

This function is analogous to the --profile option in hexagon-sim.

NOTE: If this function is not called, gprof profiling is disabled. Calling this function either
with or without a gprofPath argument will enable gprof profiling. Once enabled,
there is no way to disable gprof profiling for this session.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – Problem accessing the file.

in gprofPath Pointer to the string providing the path in which the gprof
files are to be created.

80-N2040-1786 Rev. AF 91

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.30 ConfigureProfileMode()

Specifies whether gprof profiling starts from time zero.

Prototype

HEXAPI_Status ConfigureProfileMode(bool bTimeZero);

Parameters

Detailed description

For RTOS applications, a start time of zero indicates that profile data collection begins
immediately, and thus includes the OS bootup instructions.

If bTimeZero is set to TRUE, gprof profile data collection starts from time zero.

If bTimeZero is set to FALSE, gprof profile data collection does not start from time zero,
and thus does not include the OS bootup instructions in the profile data.

This function is analogous to the --profile_timezero option in hexagon-sim.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in bTimeZero Profile mode.
■ TRUE – gprof profile data collection starts from time

zero
■ FALSE – OS boot-up instructions not included in

profile data

80-N2040-1786 Rev. AF 92

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.31 ConfigurePmuStatisticsFile()

Specifies the file that the collected PMU statistics will be written to.

Prototype

HEXAPI_Status ConfigurePmuStatisticsFile(
 const char *pmuStatsFile,
 HEXAPI_OpenMode mode=HEX_MODE_WRITE);

Parameters

Detailed description

For Hexagon V6x processors, the collected data is not written to the output file until the
HexagonWrapper destructor is called.

NOTE: By default, PMU statistics are collected for the entire program. To limit the
collection to specific parts of a program, use ConfigurePCRangeFilter and
ConfigureTimeRangeFilter.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – Problem accessing the file.

in pmuStatsFile Pointer to the fully qualified name of the file to which
Hexagon PMU statistics are to be written.

in mode Open mode for the file.
■ HEX_MODE_WRITE (default) – Create for writing;

Text mode
■ HEX_MODE_WRITEBINARY – Create binary file for

writing
■ HEX_MODE_APPEND – Append text
■ HEX_MODE_APPENDBINARY – Append binary data

80-N2040-1786 Rev. AF 93

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.32 ConfigurePacketAnalysis()

Configures the collection of instruction packet execution statistics, and enables the collection
of statistics data.

NOTE: This function is supported only in Hexagon V6x processors. It returns HEX_STAT_ERROR
if it is called with any other version.

Prototype

HEXAPI_Status ConfigurePacketAnalysis(
 const char *filename,
 HEXAPI_OpenMode mode=HEX_MODE_WRITE);

Parameters

Detailed description

The collected data is not written to the output file until the HexagonWrapper destructor
is called. This operation is performed in sync on the Hexagon processor and coprocessor.

The mode argument is optional—if omitted, the file open mode defaults to the text file
format of the host platform.

This function is equivalent to the --packet_analyze option in hexagon-sim.

By default, statistics are collected for the entire program. To limit the data collection to
specific parts of a program, use ConfigurePCRangeFilter() and
ConfigureTimeRangeFilter(). Alternatively, the data collection can be controlled
dynamically using EnablePacketAnalysis().

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_INVALID_ARGS – Incorrect parameters.

■ HEX_STAT_FILE_ACCESS_ERROR – Problem accessing the file.

■ HEX_STAT_ERROR – Invalid processor version.

in filename Pointer to the fully qualified name of the file to which
Hexagon packet statistics are to be written.

in mode Open mode for the file.
■ HEX_MODE_WRITE (default) – Create for writing;

Text mode
■ HEX_MODE_WRITEBINARY – Create binary file for

writing
■ HEX_MODE_APPEND – Append text
■ HEX_MODE_APPENDBINARY – Append binary data

80-N2040-1786 Rev. AF 94

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.33 ConfigureInstHistogram()

Configures the generation of instruction histogram data and enables the collection of
histogram data.

NOTE: This function is supported only in Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status ConfigureInstHistogram(
 const char *filename,
 HEXAPI_OpenMode mode=HEX_MODE_WRITE);

Parameters

Detailed description

The mode argument is optional—if omitted, the file open mode defaults to the text file
format of the host platform.

This function is equivalent to the --ihist option in hexagon-sim.

By default, histogram data is collected for the entire program. To limit the data collection
to specific parts of a program, use ConfigurePCRangeFilter() and
ConfigureTimeRangeFilter(). Alternatively, the data collection can be controlled
dynamically using EnableInstHistogram().

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_FILE_ACCESS_ERROR – Problem accessing the file.

in filename Pointer to the fully qualified name of the file to which
Hexagon instruction histogram data is to be written.

in mode Open mode for the file.
■ HEX_MODE_WRITE (default) – Create for writing;

Text mode
■ HEX_MODE_WRITEBINARY – Create binary file for

writing
■ HEX_MODE_APPEND – Append text
■ HEX_MODE_APPENDBINARY – Append binary data

80-N2040-1786 Rev. AF 95

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.34 ConfigurePCRangeFilter()

Enables starting and stopping of statistics collection and tracing based on instruction
execution.

Prototype

HEXAPI_Status ConfigurePCRangeFilter(HEX_VA_t PCStart,
 HEX_VA_t PCEnd);

Parameters

Detailed description

This function applies to all forms of statistics collection: gprof and normal execution
statistics. This also applies to trace generation.

When the instruction at the PCStart address is committed, statistics collection is started.
This means that statistics for the PCStart packet are not in the trace data. When the
instruction at the PCStart address is committed, statistics collection terminates. This
means that statistics the PCStart packet are in the trace data. Statistics collection will
never be restarted, even if the instruction at PCStart is executed again.

This routine merely enables the collection of statistical data. To print the statistical
information, use EmitPerfStatistics().

This function works in conjunction with ConfigureTimeRangeFilter(). Statistics
collection begins when either the TimeStart or PCStart conditions are satisfied and
terminates whenever either the TimeEnd or PCEnd conditions are met.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in PCStart Address of an instruction that, when committed, starts the
profiling data collection.

in PCEnd Address of an instruction that, when committed, ends the
profiling data collection.

80-N2040-1786 Rev. AF 96

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.35 ConfigureTimeRangeFilter()

Enables starting and stopping of statistics collection and tracing based on elapsed simulation
time.

Prototype

HEXAPI_Status ConfigureTimeRangeFilter(HEX_8u_t TimeStart,
 HEXAPI_Interval StartUnits,
 HEX_8u_t TimeEnd,
 HEXAPI_Interval EndUnits);

Parameters

Detailed description

This function applies to all forms of statistics collection: gprof and normal execution
statistics. This also applies to trace generation.

When TimeStart time has elapsed, statistics collection is started. When TimeEnd time
has elapsed, statistics collection terminates. Statistics collection will never be restarted.

This routine merely enables the collection of statistical data. To print the statistical
information, use EmitPerfStatistics().

This function works in conjunction with ConfigurePCRangeFilter(). Statistics
collection begins when either the TimeStart or PCStart conditions are satisfied and
terminates whenever either the TimeEnd or PCEnd conditions are met.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

in TimeStart Time value that indicates when to start profiling data
collection.

in StartUnits Units that represent the TimeStart parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

in TimeEnd Time value that indicates when to end profiling data
collection.

in EndUnits Units that represent the TimeEnd parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

80-N2040-1786 Rev. AF 97

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.36 EndOfConfiguration()

Signals the end of simulator configuration.

Prototype

HEXAPI_Status EndOfConfiguration();

Detailed description

Indicate to the simulator that the configuration functions will no longer be called.

Calling this function causes the simulator to evaluate configuration options and load
cosims, OS Awareness modules, symbol files, and so on If a binary image was provided, it
is loaded into Hexagon simulator memory.

NOTE: Any configuration function that is called after this function returns an error
(HEX_STAT_CANNOT_CONFIG).

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Cannot configure the simulator. End of the
configuration phase.

■ HEX_STAT_ERROR – An error exists in the configuration (for example, executable
image is not valid or is not readable).

80-N2040-1786 Rev. AF 98

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.37 SetTracing()

Enables or disables tracing at any time during execution.

Prototype

HEXAPI_Status SetTracing(HEXAPI_TracingType TracingType,
 const char *pTraceOutputFile,
 HEXAPI_OpenMode mode=HEX_MODE_WRITE);

Parameters

Detailed description

The configuration of all trace types must occur before the call to
EndOfConfiguration().

Tracing can be enabled or disabled at any time during execution.

■ To disable tracing, pass a NULL pointer as the pTraceOutputFile argument in a call
for that type. If pTraceOutputFile is NULL, the mode is ignored.

■ If the pTraceOutputFile argument is specified as non-NULL, a trace file is opened
with the mode specified for the designated TracingType.

in TracingType ■ HEX_TRACE_PC
■ HEX_TRACE_MEM
■ HEX_TRACE_BUS
■ HEX_TRACE_DCACHE
■ HEX_TRACE_ICACHE
■ HEX_TRACE_STALL
■ HEX_TRACE_L2CACHE
■ HEX_TRACE_PC_MIN – Minimal PC trace

This type is a subset of HEX_TRACE_PC.
■ HEX_TRACE_PC_NANO – Smaller than minimal PC

trace
■ HEX_TRACE_UARCH – Micro-architecture trace

This type is the union of HEX_TRACE_ICACHE,
HEX_TRACE_DCACHE, HEX_TRACE_L2CACHE,
HEX_TRACE_BUS, and HEX_TRACE_STALL.

out pTraceOutputFile Pointer to the fully qualified name of the file to contain the
respective trace's data.

in mode Open mode for the file.
■ HEX_MODE_WRITE (default) – Create file for writing

text mode
■ HEX_MODE_WRITEBINARY – Create binary file for

writing
■ HEX_MODE_APPEND – Append text
■ HEX_MODE_APPENDBINARY – Append binary data

80-N2040-1786 Rev. AF 99

Qualcomm Hexagon Simulator User Guide Interfaces

Example

HEX_TRACE_PC_MIN is a subset of HEX_TRACE_PC.
HEX_TRACE_UARCH is the union of HEX_TRACE_ICACHE,
HEX_TRACE_DCACHE, HEX_TRACE_L2CACHE, HEX_TRACE_BUS, and
HEX_TRACE_STALL.
[tools/cosims]:
commit f6c7debe9cbeaa4b9814deb3ac06f57dfac12cbe Date: Mon Jan 26
09:36:36 2015 -0600
[tools/include]:
commit 0e39da28de130336781f1054e15ca29835e95b90 Date: Fri Jul 23
16:38:55 2010 +0000

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Invalid tracing type.

■ HEX_STAT_FILE_ACCESS_ERROR – File pointer error.

80-N2040-1786 Rev. AF 100

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.8.38 ConfigureMaxPcycle()

Controls how many pcycles to simulate.

Prototype

HEXAPI_Status ConfigureMaxPcycle(HEX_8u_t limit=0);

Parameters

Detailed description

This configuration call must occur before the call to EndOfConfiguration(). The default
argument is zero, meaning there is no limit (default simulator behavior).

If the simulation is terminated because the cycle limit is reached, the hexagon-sim return
status is HEX_CORE_CYCLE_LIMIT.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Invalid tracing type.

■ HEX_CORE_CYCLE_LIMIT – File pointer error.

in limit Number of pcycles to simulate.

80-N2040-1786 Rev. AF 101

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9 External device API
Device registration functions are used by cosims or the system simulation application to
register its callback functions with the Hexagon simulator. All the registration functions can be
called before or after the configuration phase is complete. Each of these device
registration/de-registration functions can be called multiple times.

4.3.9.1 AddBusAccessCallback()

Registers a function to be called when the core issues a bus request for the memory within
the specified range.

Prototype

typedef HEXAPI_TransactionStatus (*bus_transaction_request_callback)
 (void *handle,
 HEX_PA_t address,
 HEX_4u_t lengthInBytes,
 HEX_1u_t *data,
 HEX_4u_t requestID,
 HEXAPI_BusAccessType type,
 HEX_4u_t threadNum,
 HEXAPI_BusBurstType burst);

HEXAPI_Status AddBusAccessCallback(
 void *handle,
 HEX_PA_t startAddr,
 HEX_PA_t endAddr,
 bus_transaction_request_callback brtc);

Parameters

Detailed description

The registered function must have the given prototype and returns zero if the bus request
can be accepted. If the bus request cannot be accepted, a non-zero value is returned and
the core stalls the requesting thread and re-issues the request at a later time.

If the request is accepted, the core keeps the requesting thread stalled until it receives a
BusTransactionFinished() call to indicate completion of the transaction.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in startAddr Lower bound (inclusive) of the address range to be
registered for this device.

in endAddr Upper bound (inclusive) of the address range to be
registered for this device.

in btrc Pointer to a function to be called when a bus request is
made to the given address region. See
BusTransactionRequestCallback().

80-N2040-1786 Rev. AF 102

Qualcomm Hexagon Simulator User Guide Interfaces

The intent is to allow you to model a bus. Typically, the called function (btrc) registers an
alarm callback (AddTimedCallback()) to receive notification from the simulator that
the expected latency for the operation has expired. At that time, the bus model signals
completion of the requested bus operation.

Overlapping address ranges that are registered by different external models are rejected.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Bus address ranges overlap.

80-N2040-1786 Rev. AF 103

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.2 RemoveBusAccessCallback()

Removes callback notification for an external bus model from the simulator.

Prototype

HEXAPI_Status RemoveBusAccessCallback(void *handle);

Parameters

Detailed description

The callbacks associated with the handle are removed for all address ranges for which a
callback was registered.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot find registered bus device.

4.3.9.3 AddFrequencyChangeCallback()

Used by an external device model that requires simulator notification every time the Hexagon
core frequency changes. It can use the new frequency to calculate appropriate delays as
required.

Prototype

typedef void (*frequency_change_callback) (void *handle,
 HEX_4u_t newFrequency);

HEXAPI_Status AddFrequencyChangeCallback(
 void *handle,
 frequency_change_callback fcc)

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot find registered bus device.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in fcc Pointer to a function to call for frequency change
notification. See FrequencyChangeCallback().

80-N2040-1786 Rev. AF 104

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.4 RemoveFrequencyChangeCallback()

Used by an external device model to remove itself from a list of devices that have registered
to get a callback every time the core frequency changes.

Prototype

HEXAPI_Status RemoveFrequencyChangeCallback(void *handle);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot remove call to
FrequencyChangeCallback() for the device.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

80-N2040-1786 Rev. AF 105

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.5 AddTimedCallback()

Used by an external device model that requires notification from the simulator that interval
simulator-time units have expired. This notification continues to be delivered by the simulator
until canceled.

Prototype

typedef void (*timed_callback) (void *handle);

HEXAPI_Status AddTimedCallback(void *handle,
 HEX_8u_t interval,
 HEXAPI_Interval i_typ,
 timed_callback tc);

Parameters

Detailed description

The granularity of the time increment is bounded by the current core frequency setting.
The finest granularity available corresponds to the time taken by a single processor cycle.
All time values are scaled according to the current processor clock frequency and are
rescaled if the core frequency changes.

The parameter handle can be anything. The addition and removal of a timedCallback is
keyed on this handle. Have a unique handle for each instance of a new callback. If you
add two callbacks using the same handle and then remove one callback, both callbacks
are removed.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot register the callback.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in interval Interval in terms of simulator-time units.

in i_typ Units that represent the interval parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PCYCLE – Processor cycles
■ HEX_PICOSEC – Picoseconds

in tc Pointer to a function to be called every interval time
units. See TimedCallback().

80-N2040-1786 Rev. AF 106

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.6 AddTimedCallbackFP()

Used by an external device model that requires notification from the simulator that a
specified number of simulator-time units have expired. This notification continues to be
delivered by the simulator until canceled.

NOTE: This function is identical to AddTimedCallback(), except that the time interval is
expressed as a double-precision floating point value.

Prototype

typedef void (*timed_callback) (void *handle);

HEXAPI_Status AddTimedCallbackFP(void *handle,
 HEX_8f_t interval,
 HEXAPI_Interval i_typ,
 timed_callback tc);

Parameters

Detailed description

The granularity of the time increment is bounded by the current core frequency setting.
The finest granularity available corresponds to the time taken by a single processor cycle.
All time values are scaled according to the current processor clock frequency and are
rescaled if the core frequency changes.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot register the callback.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in interval Interval in terms of simulator-time units (expressed as
double-precision floating point value).

in i_typ Units that represent the interval parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PCYCLE – Processor cycles
■ HEX_PICOSEC – Picoseconds

in tc Pointer to a function to be called every interval time units.
See TimedCallback().

80-N2040-1786 Rev. AF 107

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.7 AddOneShotTimedCallback()

Used by an external device model that requires notification from the simulator that a
specified number of simulator-time units have expired. This notification is delivered only
once; for repeated notifications, use AddTimedCallback() instead.

Prototype

typedef void (*timed_callback) (void *handle);

HEXAPI_Status AddOneShotTimedCallback(void *handle,
 HEX_8u_t interval,
 HEXAPI_Interval i_typ,
 timed_callback tc);

Parameters

Detailed description

The granularity of the time increment is bounded by the current core frequency setting.
The finest granularity available corresponds to the time taken by a single processor cycle.
All time values are scaled according to the current processor clock frequency and are
rescaled if the core frequency changes.

NOTE: RemoveTimedCallback() is not necessary for one-shot timed callbacks, except to
stop the notification before it occurs.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot register the callback.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs()

in interval Interval in terms of simulator-time units.

in i_typ Units that represent the interval parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PCYCLE – Processor cycles
■ HEX_PICOSEC – Picoseconds

in tc Pointer to a function to be called every interval time units.
See TimedCallback().

80-N2040-1786 Rev. AF 108

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.8 RemoveTimedCallback()

Used by an external device model to remove itself from a list of devices that have registered
to get a callback every interval period.

Prototype

HEXAPI_Status RemoveTimedCallback(void *handle);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot remove TimedCallback for the device.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

80-N2040-1786 Rev. AF 109

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.9 AddMemWasWrittenCallback()

Registers an external device that monitors memory write events.

Prototype

typedef void (*memory_written_callback) (void *handle,
 HEX_PA_t address,
 HEX_8u_t value,
 HEX_4u_t sizeInBytes);

HEXAPI_Status AddMemWasWrittenCallback(
 void *handle,
 HEX_PA_t startAddr,
 HEX_PA_t endAddr,
 memory_written_callback mwc);

Parameters

Detailed description

The mwc function is called by the simulator when a memory write is detected whose
address is within the range of [startAddr, endAddr].

This function accepts overlapping ranges.

NOTE: mwc is called on any memory write event, even if the access results in a cache hit.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot add memory write monitor callback.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in startAddr Lower bound of the address range registered for this
device.

in endAddr Upper bound of the address range registered for this
device. endAddr is inclusive in the range.

in mwc Pointer to a function to be called whenever the core writes
to memory with an address in the specified range
(inclusive). See MemoryWasWrittenCallback().

80-N2040-1786 Rev. AF 110

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.10 RemoveMemWasWrittenCallback()

Removes notifications for an external device that tracks memory write events.

Prototype

HEXAPI_Status RemoveMemWasWrittenCallback(void *handle);

Parameters

Detailed description

All memory ranges intercepted by the cosim associated with the handle will have their
callback notifications removed.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot remove memory write monitor.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

80-N2040-1786 Rev. AF 111

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.11 AddMemWasReadCallback()

Registers an external device that monitors memory read events.

Prototype

typedef void (*memory_read_callback) (void *handle,
 HEX_PA_t address,
 HEX_8u_t value,
 HEX_4u_t sizeInBytes);

HEXAPI_Status AddMemWasReadCallback(void *handle,
 HEX_PA_t startAddr,
 HEX_PA_t endAddr,
 memory_read_callback mrc);

Parameters

Detailed description

The mrc function is called by the simulator when a memory read is detected whose
address is within the range of [startAddr, endAddr].

This function accepts overlapping ranges.

NOTE: mwc is called on any memory read event, even if the access results in a cache hit.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot configure the memory read monitor.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in startAddr Lower bound of the address range registered for this
device.

in endAddr Upper bound of the address range registered for this
device. endAddr is inclusive in the range.

in mrc Pointer to a function to be called whenever the core reads
from memory with an address in the specified range
(inclusive). See MemoryWasReadCallback().

80-N2040-1786 Rev. AF 112

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.12 RemoveMemWasReadCallback()

Removes notifications for an external device that tracks memory read events.

Prototype

HEXAPI_Status RemoveMemWasReadCallback(void *handle);

Parameters

Detailed description

All memory ranges intercepted by the cosim associated with the handle will have their
callback notifications removed.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot remove the memory read monitor.

in handle Pointer to the external cosim handle returned from
RegisterCosim() or RegisterCosimArgs().

80-N2040-1786 Rev. AF 113

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.13 AddPCCallback()

Registers a callback function that corresponds to the execution of an instruction indexed by a
PC.

Prototype

typedef (void) (*pc_callback) (void *handle);

HEXAPI_Status AddPCCallback(void *handle,
 HEX_VA_t vpc,
 pc_callback pcc);

Parameters

Detailed description

This callback function is invoked just before the instruction at PC is committed.

Only one callback function that corresponds to a VPC address by one cosim can be
registered. The callback is triggered when the currently executing thread’s PC register
equals this value.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot register the PC callback at vpc.

in handle Pointer to the external cosim handle returned from
RegisterCosim() or RegisterCosimArgs().

in vpc PC address in virtual space where the breakpoint is to be
set.

in pcc Function pointer to the callback function that is called
when vpc is reached. See PCCallback().

80-N2040-1786 Rev. AF 114

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.14 RemovePCCallback()

Removes a PCCallback function that corresponds to the execution of an instruction indexed
by a PC.

Prototype

HEXAPI_Status RemovePCCallback(void *handle,
 HEX_VA_t vpc);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot remove the PC callback at vpc.

in handle Pointer to the external cosim handle returned from
RegisterCosim() or RegisterCosimArgs().

in vpc PC address in virtual space where the breakpoint is to be
removed.

80-N2040-1786 Rev. AF 115

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.15 AddBeforeSimulationStartsCallback()

Registers a callback function that will be called at the end of EndOfConfiguration().

Prototype

typedef (void) (*cosim_callback)(void *handle);

HEXAPI_Status AddBeforeSimulationStartsCallback(
 void *handle,
 cosim_callback cc);

Parameters

Detailed description

When this callback is made, the simulator has been fully configured, including
instantiating all cosims and loading the executable image (if one was specified).

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Cannot set the callback.

in handle Pointer to the external cosim handle returned from
RegisterCosim() or RegisterCosimArgs().

in cc Pointer to a function to be called after configuration has
completed but before the first cycle is simulated.

80-N2040-1786 Rev. AF 116

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.16 AddEndOfSimulationCallback()

Registers a callback function that will be called at the end of simulation.

Prototype

typedef (void) (*cosim_callback)(void *handle);

HEXAPI_Status AddEndOfSimulationCallback(void *handle,
 cosim_callback cc);

Parameters

Detailed description

When this callback is made, the simulation has terminated but no resources (cosims,
memory, statistics, and so on) have been freed.

When this callback is made, the cosim is free to make any calls that do not attempt to
advance the simulation. For instance, statistics can be printed, memory can be examined,
and so on

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Cannot set the callback.

in handle Pointer to the external cosim handle returned from
RegisterCosim() or RegisterCosimArgs().

in cc Pointer to a function to be called after simulation has
finished but before resources are deallocated.

80-N2040-1786 Rev. AF 117

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.17 AddCoreReadyCallback()

Used by an external device model that requires notification when the core’s CORE_READY
signal changes state.

Prototype

typedef void (*core_ready_callback)(
 void *handle,
 HEXAPI_CoreReadyState polarity);

HEXAPI_Status AddCoreReadyCallback(void *handle,
 core_ready_callback crc);

Parameters

Detailed description

This function is used primarily by cosims that are modeling second-level interrupt
controllers. The state of this signal indicates whether the core is ready to accept an
interrupt from the second-level controller.

The polarity parameter of the callback function can be either CORE_READY or
CORE_NOT_READY.

NOTE: No RemoveCoreReadyCallback function is defined in the API because this callback
is expected to remain active throughout the simulation.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Resource allocation error or invalid processor version.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in crc Pointer to a function to call for core ready state change.
See CoreReadyCallback().

80-N2040-1786 Rev. AF 118

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.18 AddPrivilegeChangeCallback()

Used by an external device model that requires notification when the Hexagon processor’s
privilege mode changes.

Prototype

typedef void (*privilege_change_callback) (
 void *handle,
 HEX_4u_t hardware_thread_id,
 HEXAPI_PrivilegeMode mode);

HEXAPI_Status AddPrivilegeChangeCallback(
 void *handle,
 privilege_change_callback pcc);

Parameters

Detailed description

The hardware_thread_id parameter of the callback function indicates the hardware
thread associated with the privilege mode change.

The mode parameter of the callback function indicates the new privilege mode. It can be
either MONITOR_MODE, USER_MODE, GUEST_MODE, or INVALID_MODE.

NOTE: Before this callback was added to the simulator system API, the caller was required
to poll the simulator to determine when privilege changes occurred.

NOTE: No RemovePrivilegeChangeCallback function is defined in the API because this
callback is expected to remain active throughout the simulation.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Resource allocation error or invalid processor version.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in pcc Pointer to a function to call for privilege state change.
See CoreReadyCallback().

80-N2040-1786 Rev. AF 119

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.19 AddQtimerCallback()

Registers an external device that models Qtimer (a standard system module external to the
Hexagon processor).

NOTE: This function is supported only in Hexagon V61 and later processors. It returns
HEX_STAT_ERROR if it is called with any other version.

Prototype

typedef HEX_8u_t (*qtimer_callback) (void *handle,
 int index);

HEXAPI_Status AddQtimerCallback(void *handle,
 qtimer_callback qtc);

Parameters

Detailed description

The qtc function is called by the simulator when the core needs to access Qtimer.

The registered function accepts an index value that specifies the Qtimer event type.
Currently this index value will always be 0, which indicates that the core issued a Qtimer
read request. In this case the registered function must return (as a function result value) a
56-bit unsigned integer value indicating Qtimer’s current physical counter value.

NOTE: In future versions of the simulator, the index value might be set to other values to
indicate that different types of Qtimer requests are being issued.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_DEVICE_NOT_FOUND – Cannot register the callback.

■ HEX_STAT_ERROR – Invalid processor version.

in handle Pointer to the external bus model handle returned from
RegisterCosim() or RegisterCosimArgs().

in qtc Pointer to a function to call for the Qtimer event.

80-N2040-1786 Rev. AF 120

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.20 GetAPIVersion()

Returns the current API version.

Prototype

void GetAPIVersion(HEX_4u_t *major,
 HEX_4u_t *minor,
 HEX_4u_t *build);

Parameters

Detailed description

This function can be used by either a system simulation environment or a co-simulation
model to validate compatibility with the API. The major version number increments when
incompatibilities are introduced in the API.

Returns

None.

out major Pointer to the major API revision number.

out minor Pointer to the minor API revision number.

out build Pointer to the build identifier.

80-N2040-1786 Rev. AF 121

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.9.21 PrintBuildTag()

Print the build tag information for the simulator library. The information is written to the
standard output.

Prototype

void PrintBuild Tag(void);

Detailed description

Build tag information is intended primarily for users who are running system simulations,
and occasionally need detailed information on how the simulator library was built. For
users running standalone simulations, build tag information is generally not useful.

This function is equivalent to the --build_tag option in hexagon-sim.

NOTE: For simulator API users: if you are not sure which library versions are loaded for
your run-time instance, add this call and report to QTI field support for help on
determining the exact versions.

Returns

None.

Example

Build tag information is formatted as follows in the standard output:

hexagon-sim --build_tag
[arch_v62]:
TAGS co-located: v62_20200227
 commit f8f0b09fd5fb6625dfa4681b46782095e3e0b05f
 Date: Wed Jan 15 11:08:27 2020 -0600
[arch_v65]:
TAGS co-located: v65_20200917 v65_20201214
 commit 544bd4c15d696c584a940482d2391f48b996ad89
 Date: Mon Aug 24 12:20:33 2020 -0500
[arch_v66]:
TAGS co-located: v66_20201214
 commit 89c837eeca7f855e12f570aaca0fa4dd0158250a
 Date: Fri Oct 30 15:21:06 2020 -0500
[arch_v67]:
TAGS co-located: v67_20201214
 commit 9a9892fbe2cf8e185aba62c05bbdf697ee6a36aa
 Date: Mon Nov 30 23:23:45 2020 -0800
[arch_v68]:
TAGS co-located: v68_20201214
 commit 43dcfbc5d76e378306a74b122d53a082e6a2f7e1
 Date: Mon Dec 7 19:42:03 2020 -0800
[tools/simulator]:
BRANCH: (no
 commit 249d91cb8546ae512cbe69bb10f7855f3aed3596
 Date: Fri Feb 26 09:19:35 2021 -0800

80-N2040-1786 Rev. AF 122

Qualcomm Hexagon Simulator User Guide Interfaces

[tools/libs]:
 commit 5e2b0ddfd2679a94528d4e996ad26e16e3eb18ff
 Date: Fri Feb 5 13:18:43 2021 -0600
[tools/cosims]:
 commit 7451e9c494f361b9abc874e0291da14abdeb068a
 Date: Mon Mar 2 18:11:24 2020 -0600
[tools/ddrclade]:
 Clade Version: 01, 01, 47
 Clade2 Version: 01, 01, 62
Internal-use-only: S0 SD0

80-N2040-1786 Rev. AF 123

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.10 Runtime simulator calls
These simulator calls are made either before or after the configuration step. These are used
for changing certain simulation options at runtime or to get information at runtime. These
calls can be made multiple times.

4.3.10.1 EVB()

Specifies the value of the event vector base register. By default, the EVB is set to zero or to the
entry point of the loaded binary file.

Prototype

void EVB(HEX_PA_t EVBStartAddr);

Parameters

Returns

None.

4.3.10.2 CoreFrequency()

Sets or gets the Hexagon frequency anytime during the simulation. Passing a value of zero
leaves the current frequency unchanged and returns the current frequency.

Prototype

HEX_8u_t CoreFrequency(HEX_8u_t ClkHz);

Parameters

Returns

Hexagon clock frequency in Hz.

in EVBStartAddr Starting address of the EVB.

in ClkHz Hexagon clock frequency in Hertz.
If 0, return the current clock frequency.

80-N2040-1786 Rev. AF 124

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.10.3 VerboseMode()

Set the level of verbosity. Verbose messages are sent to stdout in the simulator.

Prototype

void VerboseMode(HEXAPI_VerboseMode mode);

Parameters

Returns

None.

4.3.10.4 AddSymbolFile()

Specifies the file from which symbol information is loaded.

Prototype

HEXAPI_Status AddSymbolFile(const char *pSymFile);

Parameters

Detailed description

Multiple symbol files can be provided by calling this function multiple times. If this
function is called during the configuration phase, the file handle is added to a list of
symbol file handles and the symbols are loaded at the end of the configuration phase.

NOTE: pSymFile is opened using HEX_MODE_READBINARY mode.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_FILE_ACCESS_ERROR – Problem accessing the file.

in mode Verbosity level.
■ HEX_QUIET – No messages printed
■ HEX_NORMAL – Normal end-of-program statistics

printed (default)
■ HEX_VERBOSE – Print high-level warnings and

messages
■ HEX_REALLY_VERBOSE – Prints lots of

informational messages

in pSymFile Pointer to the fully qualified name of the ELF file that
contains symbols.

80-N2040-1786 Rev. AF 125

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11 Simulator control
These simulator calls can be made only after the configuration step. These are used for
runtime control and access to Hexagon core memory and registers. These calls can be made
multiple times.

4.3.11.1 LoadExecutableBinary()

Loads or reloads an executable for simulation.

Prototype

HEXAPI_Status LoadExecutableBinary (const char *pElfFile=NULL);

Parameters

Detailed description

Calling this function without a parameter (or with a NULL parameter value) causes the
binary specified with ConfigureExecutableBinary() to be loaded or reloaded. This is
typically done to restart simulating the current program. The file is opened using
HEX_MODE_READBINARY mode.

Reset might be required for this function to act properly.

If no filename is provided by this function and ConfigureExecutableBinary() was not
called, this function has no effect.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Configuration error or image is not loaded.

■ HEX_STAT_FILE_ACCESS_ERROR – Cannot load image, or image is invalid for this
processor version.

in pElfFile Pointer to the fully qualified name of the Hexagon ELF file
executable program to load into memory for simulation.
A NULL parameter causes the existing image to be
reloaded.

80-N2040-1786 Rev. AF 126

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.2 Run()

Runs the Hexagon core until it finishes executing (all threads stop) due to an unrecoverable
error (such as a double exception) or because a breakpoint was hit.

Prototype

HEXAPI_CoreState Run(HEX_4u_t *result);

Parameters

.Detailed description

The execution result is the exit code of the simulated program for normal termination
(HEX_CORE_FINISHED), or undefined for the other return values.

If a valid call to ConfigureRemoteDebug() was made in the configuration phase, the
simulator will wait for a connection from the debugger and control will be passed to the
debugger. A Run() call returns HEX_CORE_FINISHED when the debugger exits.

Returns

■ HEX_CORE_FINISHED – Program is finished.

■ HEX_CORE_BREAKPOINT – Breakpoint is hit.

■ HEX_CORE_RESET – Core is in Reset.

■ HEX_CORE_ASYNCHRONOUS_BREAK – Asynchronous break.

■ HEX_CORE_ERROR – Configuration error.

out result Pointer to the return code from the simulated program’s
exit() call.

80-N2040-1786 Rev. AF 127

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.3 Step()

Steps the Hexagon core for one or more cycles.

Prototype

HEXAPI_CoreState Step(HEX_4u_t cycles,
 HEX_4u_t *cyclesExecuted,
 HEX_4u_t *result);

Parameters

Detailed description

The actual number of cycles stepped is returned in cyclesExecuted. The result is the
exit code of the simulated program on normal termination (HEX_CORE_FINISHED) and
undefined for other return codes.

This function will not connect to a debugger, regardless of whether
ConfigureRemoteDebug() was successfully called. To connect to a debugger, call Run()
in conjunction with AddTimedCallback() to execute the program for a specific time
period with the debugger connected.

Returns

■ HEX_CORE_SUCCESS

■ HEX_CORE_FINISHED – Program is finished.

■ HEX_CORE_BREAKPOINT – Breakpoint is hit.

■ HEX_CORE_RESET – Core is in Reset.

■ HEX_CORE_ASYNCHRONOUS_BREAK – Asynchronous break.

■ HEX_CORE_ERROR – Configuration error.

in cycles Number of Hexagon processor cycles to execute.

out cyclesExecuted Pointer to the actual number of cycles executed.

out result Pointer to the return code from the simulated program’s
exit() call.

80-N2040-1786 Rev. AF 128

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.4 StepTime()

Steps the processor the number of cycles equivalent to the time input parameter.

Prototype

HEXAPI_CoreState StepTime(HEX_8u_t time,
 HEXAPI_Interval units,
 HEX_4u_t *cyclesExecuted,
 HEX_4u_t *result);

Parameters

Detailed description

The actual number of cycles stepped is returned in cyclesExecuted. The result is the
exit code of the simulated program on normal termination (HEX_CORE_FINISHED) and
undefined for other return codes.

This function will not connect to a debugger, regardless of whether
ConfigureRemoteDebug() was successfully called. To connect to a debugger, call Run()
in conjunction with AddTimedCallback() to execute the program for a specific time
period with the debugger connected.

Returns

■ HEX_CORE_SUCCESS

■ HEX_CORE_FINISHED – Program is finished.

■ HEX_CORE_BREAKPOINT – Breakpoint is hit.

■ HEX_CORE_RESET – Core is in Reset.

■ HEX_CORE_ASYNCHRONOUS_BREAK – Asynchronous break.

■ HEX_CORE_ERROR – Configuration error.

in time Number of time units to step.

in units Units that represent the time parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

in cycles Number of Hexagon cycles to execute.

out cyclesExecuted Pointer to the actual number of cycles executed.

out result Pointer to the return code from the simulated program’s
exit() call.

80-N2040-1786 Rev. AF 129

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.5 SetInterrupt()

Asserts an interrupt to the Hexagon core.

Prototype

HEXAPI_Status SetInterrupt(HEX_4u_t interruptNum,
 HEXAPI_InterruptPinState state);

Parameters

Detailed description

The interrupt is asserted by setting the appropriate bit in the interrupt pending register of
the core to the appropriate state. The wrapper ensures that the interrupt is asserted or
deasserted regardless of whether the interrupt is positive level- or edge-triggered or
negative level- or edge-triggered.

If the core is to vector to the interrupt handler, interrupts must be enabled and the
interrupt mask must be set correctly.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Incorrect interrupt number.

in interruptNum Interrupt number for the Hexagon core.
Range: 0 to 31

in state ■ INT_PIN_DEASSERT – Deassert the interrupt
interruptNum

■ INT_PIN_ASSERT – Assert the interrupt
interruptNum

80-N2040-1786 Rev. AF 130

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.6 AssertNMI

Asserts a non-maskable interrupt to the core. It remains asserted until it is deasserted.

Prototype

HEXAPI_Status AssertNMI();

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – NMI is already asserted, or this function was called during the
configuration phase.

4.3.11.7 DeassertNMI()

Deasserts the NMI signal to the core. If no NMI is asserted, this function has no effect.

Prototype

HEXAPI_Status DeassertNMI();

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – NMI is already deasserted, or this function was called during the
configuration phase.

80-N2040-1786 Rev. AF 131

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.8 ClearInterrupt

Clears a specific interrupt in the interrupt pending register of the Hexagon core.

Prototype

HEXAPI_Status ClearInterrupt(HEX_4u_t interruptNum);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Incorrect interrupt number.

4.3.11.9 ClearAllInterrupts()

Clears all interrupts in the interrupt pending register of the Hexagon core.

Prototype

void ClearAllInterrupts();

Returns

None.

in interruptNum Interrupt number for the Hexagon core.
Range: 0 to 31

80-N2040-1786 Rev. AF 132

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.10 SetBreakpoint

Sets a breakpoint at a virtual address.

Prototype

HEXAPI_Status SetBreakpoint(HEX_VA_t vpc);

Parameters

Detailed description

The list of breakpoints is maintained as an unbounded list within the simulator. Multiple
calls to set a breakpoint on a certain address results in only one breakpoint being set. The
simulator returns from a Run or Step command at the point just before the instruction at
the specified address commits. The address passed to this function must be the address
of the first instruction of a packet for the breakpoint to be recognized.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Problem setting the breakpoint.

in vpc Virtual address where a breakpoint is to be set.

80-N2040-1786 Rev. AF 133

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.11 ClearBreakpoint()

Clears a breakpoint at the address specified by the provided virtual address. No action is
taken if there is no breakpoint set at the given address.

Prototype

HEXAPI_Status ClearBreakpoint(HEX_VA_t vpc);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Problem clearing the breakpoint.

4.3.11.12 ClearAllBreakpoints()

Clears all breakpoints.

Prototype

HEXAPI_Status ClearAllBreakpoints();

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Problem clearing the breakpoints.

in vpc Virtual address for which breakpoint is to be cleared

80-N2040-1786 Rev. AF 134

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.13 AssertReset()

Puts the Hexagon core into Reset mode.

Prototype

HEXAPI_Status AssertReset();

Detailed description

When in reset mode, the core cannot step or run. The registers are cleared and so are all
statistics and profile data counters. PC is set to EVB value.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Core is already in reset, or this function was called during the
configuration phase.

4.3.11.14 DeassertReset()

Takes the Hexagon core out of Reset mode.

Prototype

HEXAPI_Status DeassertReset();

Detailed description

The simulator vectors to the reset vector PC value (described by the EVB register). The
EVB must be set at least once before the core is taken out of reset.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Core is not in reset, or this function was called during the
configuration phase.

80-N2040-1786 Rev. AF 135

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.15 BusTransactionFinished()

Used by an external bus cosim to indicate completion of a bus transaction.

Prototype

void BusTransactionFinished(HEX_1u_t * data,
 HEX_4u_t size,
 HEX_4u_t requestID);

Parameters

Detailed description

The requestID for this call corresponds to the ID passed to the bus transaction request
callback function by the simulator. See AddBusAccessCallback() and
BusTransactionRequestCallback().

Returns

None.

in data Pointer to the data returned by the external bus co-
simulation.

in size Size of data in bytes.

in requestID ID of the bus transaction.
This ID must correspond to the ID provided by a previous
BusTransactionRequestCallback() call.

80-N2040-1786 Rev. AF 136

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.16 WriteThreadRegister()

Writes a 32-bit value to a Hexagon thread register. HEXAPI_TH_REG is a thread register
enumeration that is provided with HexagonTypes.h.

Prototype

HEXAPI_Status WriteThreadRegister(HEX_4u_t threadNum,
 HEXAPI_TH_REG index,
 HEX_4u_t value);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid register number.

4.3.11.17 ReadThreadRegister()

Reads a 32-bit value from a Hexagon thread register. HEXAPI_TH_REG is a thread register
enumeration that is provided with HexagonTypes.h.

Prototype

HEXAPI_Status ReadThreadRegister(HEX_4u_t threadNum,
 HEXAPI_TH_REG index,
 HEX_4u_t *value);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid register number.

in threadNum Selected hardware thread for the register to be set.

in index Selected thread register for the hardware thread.

in value Value to be written.

in threadNum Selected hardware thread for the register to be read.

in index Selected thread register for the hardware thread.

out value Pointer to the value read from the register.

80-N2040-1786 Rev. AF 137

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.18 WriteVectorRegister()

Writes an unsigned 32-bit value to an HVX vector register.

NOTE: This function is supported only in Hexagon V6x processors. It returns HEX_STAT_ERROR
if it is called with any other version.

Prototype

HEXAPI_Status WriteVectorRegister(char *regtype,
 HEX_4u_t tnum,
 int extno,
 HEX_4u_t reg_id,
 HEX_4u_t word_id,
 HEX_4u_t value);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid register number.

■ HEX_STAT_ERROR – Invalid processor architecture.

in regtype Pointer to the register type.
■ v – Access the V register (data)
■ q – Access the Q register (predicate)

in tnum Hardware thread ID.

in extno Register context.
■ 4,5,6,7 – HVX register contents
■ Other – Reserved

in reg_id ■ V register – 0 to 31
■ Q register – 0 to 3

in word_id ■ V register – 0 to 15
■ Q register – 0 to 1

in value Value written to the register.

80-N2040-1786 Rev. AF 138

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.19 ReadVectorRegister()

Reads an unsigned 32-bit value from an HVX vector register.

NOTE: This function is supported only in Hexagon V6x processors. It returns HEX_STAT_ERROR
if it is called with any other version.

Prototype

HEXAPI_Status ReadVectorRegister(char *regtype,
 HEX_4u_t tnum,
 int extno,
 HEX_4u_t reg_id,
 HEX_4u_t word_id,
 HEX_4u_t *value_addr);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid register number.

■ HEX_STAT_ERROR – Invalid processor architecture.

in regtype Pointer to the register type.
■ v – Access the V register (data)
■ q – Access the Q register (predicate)

in tnum Hardware thread ID.

in extno Register context.
■ 4,5,6,7 – HVX register contents
■ Other – reserved

in reg_id ■ V register – 0 to 31
■ Q register – 0 to 3

in word_id ■ V register – 0 to 15
■ Q register – 0 to 1

out value_addr Pointer to the value read from the register.

80-N2040-1786 Rev. AF 139

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.20 WriteGlobalRegister()

Writes a 32-bit value to a Hexagon global register. HEXAPI_G_REG is a global register
enumeration that is provided with HexagonTypes.h.

Prototype

HEXAPI_Status WriteGlobalRegister(HEXAPI_G_REG index,
 HEX_4u_t value);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid register number.

4.3.11.21 ReadGlobalRegister()

Reads a 32-bit value from a Hexagon global register. HEXAPI_G_REG is a global register
enumeration that is provided with HexagonTypes.h.

Prototype

HEXAPI_Status ReadGlobalRegister(int index,
 HEX_8u_t *value);

Parameters

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid register number.

in index Selected global register.

in value Value to be written.

in index Selected global register.

out value Pointer to the value read from the register.

80-N2040-1786 Rev. AF 140

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.22 WriteTLBRegister()

Writes a 64-bit value to a Hexagon TLB register.

Prototype

HEXAPI_Status WriteTLBRegister(int index,
 HEX_8u_t value);

Parameters

Detailed description

TLB register values are written to the low-level architecture library, which does not return
any result status information. Thus this function returns only HEX_STAT_SUCCESS as a
result value.

Returns

HEX_STAT_SUCCESS

4.3.11.23 ReadTLBRegister()

Reads a 64-bit value from a Hexagon TLB register.

Prototype

HEXAPI_Status ReadTLBRegister(int index,
 HEX_8u_t *value);

Parameters

Detailed description

TLB register values are read from the low-level architecture library, which does not return
any result status information. Thus, this function returns only HEX_STAT_SUCCESS as a
result value.

Returns

HEX_STAT_SUCCESS

in index Selected TLB register.

in value Value to be written.

in index Selected TLB register.

out value Pointer to the value read from the register.

80-N2040-1786 Rev. AF 141

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.24 WriteMemory()

Writes value to Hexagon memory.

Prototype

HEXAPI_Status WriteMemory (HEX_PA_t paddr,
 HEX_4u_t size,
 HEX_8u_t value);

Parameters

Detailed description

This function is an incoherent write function in that the cache is not updated. The data
value is written to the memory by potentially initiating a debug bus transaction.

If the bus transaction fails, this function returns HEX_STAT_MEM_ACCESS_ERROR and no
action is taken.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid size.

■ HEX_STAT_MEM_ACCESS_ERROR – Cannot access memory.

in paddr Physical address where data is to be written.

in size Data size in bytes (1, 2, 4, or 8 bytes).

in value Value to be written to Hexagon memory.

80-N2040-1786 Rev. AF 142

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.25 ReadMemory()

Reads up to a 64-bit value from Hexagon memory.

Prototype

HEXAPI_Status ReadMemory(HEX_PA_t paddr,
 HEX_4u_t size,
 void *value);

Parameters

Detailed description

This function bypasses the cache and reads directly from memory, which could result in a
debug bus transaction. If the bus transaction fails, this function returns
HEX_STAT_MEM_ACCESS_ERROR and no action is taken.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid size.

■ HEX_STAT_MEM_ACCESS_ERROR – Cannot access memory.

in paddr Physical address where data is read.

in size Data size in bytes (1, 2, 4, or 8 bytes).

out value Pointer to the value read from Hexagon memory.

80-N2040-1786 Rev. AF 143

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.26 WriteVirtual()

Writes up to a 64-bit value at the virtual address specified by vaddr.

Prototype

HEXAPI_Status WriteVirtual(HEX_VA_t vaddr,
 HEX_4u_t ASID,
 HEX_4u_t size,
 HEX_8u_t value);

Parameters

Detailed description

This is a convenience function that performs virtual to physical address translation, writes
the data into the cache (if present) and writes to memory if the data is not in cache.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid size.

■ HEX_STAT_CANNOT_TRANSLATE – Cannot translate vaddr.

in vaddr Virtual address where data is to be written.

in ASID ASID to match when doing virtual-to-physical address
translation.
An ASID value of 0xFFFFFFFF will match any ASID with
a translation for the vaddr

in size Data size in bytes (1, 2, 4, or 8 bytes).

in value Value to be written.

80-N2040-1786 Rev. AF 144

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.27 ReadVirtual()

Reads up to a 64-bit value at the virtual address specified by vaddr.

Prototype

HEXAPI_Status ReadVirtual(HEX_VA_t vaddr,
 HEX_4u_t ASID,
 HEX_4u_t size,
 void *value);

Parameters

Detailed description

This is a convenience function that performs virtual to physical address translation,
probes the cache for the data and reads from memory if the data is not in cache.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_INVALID_ARGS – Invalid size.

■ HEX_STAT_CANNOT_TRANSLATE – Cannot translate vaddr.

in vaddr Virtual address from where data is to be read.

in ASID ASID to match when doing virtual-to-physical address
translation.
An ASID value of 0xFFFFFFFF will match any ASID with
a translation for the vaddr.

in size Data size in bytes (1, 2, 4, or 8 bytes).

out value Pointer to the value that was read.

80-N2040-1786 Rev. AF 145

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.28 ReadSymbolValue()

Reads the address or value that corresponds to a symbol.

Prototype

HEXAPI_Status ReadSymbolValue(const char *Symbol,
 HEX_4u_t *value);

Parameters

Detailed description

The simulator can provide this information if it can read symbol information from the
binary or the symbol files.

NOTE: The string passed to this function is the mangled symbol name. The simulator does
not perform any transformation on the symbol name passed in.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Function was called during the configuration phase.

■ HEX_STAT_CANNOT_TRANSLATE – Symbol was not found.

in Symbol Pointer to the symbol to be read from the simulator.

out value Pointer to the value that corresponds to the symbol read
from the symbol files or executable loaded in the
simulator.

80-N2040-1786 Rev. AF 146

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.29 TranslateVirtualToPhysical()

Translates a given virtual address (with ASID) into a physical address.

Prototype

HEXAPI_Status TranslateVirtualToPhysical(HEX_VA_t vaddr,
 HEX_4u_t ASID,
 HEX_PA_t *paddr);

Parameters

Detailed description

The translation algorithm looks in the RTOS structures for a valid translation. In the case
of a standalone program (that is, no RTOS module is loaded), the TLB entries are searched
for the translation.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_TRANSLATE – No translation for the specified vaddr exists.

in vaddr Virtual address that requires translation.

in ASID ASID for which the vaddr is valid.
Specifying 0xFFFFFFFF for the ASID will match any ASID
with a translation for the vaddr.

out paddr Pointer to the physical address that corresponds to the
specified virtual address.

80-N2040-1786 Rev. AF 147

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.30 CycleToTime()

Translates a given cycle count into units of time, taking into account the current core
frequency.

Prototype

void CycleToTime(HEX_8u_t cycleCount,
 HEX_8u_t *time,
 HEXAPI_Interval *units);

Parameters

Returns

None.

in cycleCount Number of cycles.

out time Pointer to the estimated amount of time in units returned
that it would take the simulator to execute the number of
cycles given.

out units Units that represent the time parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

80-N2040-1786 Rev. AF 148

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.31 TimeToCycles()

Translates a time value to a specified number of processor cycles.

Prototype

void TimeToCycles(HEX_8u_t time,
 HEX_8u_t *cycleCount,
 HEXAPI_Interval units);

Parameters

Returns

None.

in time Amount of time in units as specified by the units
parameter.

out cycleCount Pointer to the estimated number of cycles that match the
time parameter.

NOTE: Due to rounding effects, the number can be off by
±1 cycle.

in units Units that represent the time parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

80-N2040-1786 Rev. AF 149

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.32 GetElapsedSimulationTime()

Returns the elapsed time in the specified units since the start of simulation.

Prototype

HEXAPI_Status GetElapsedSimulationTime(HEX_8u_t *time,
 HEXAPI_Interval units);

Parameters

Detailed description

The actual elapsed time is converted to the specified units, provided no underflow
occurs.

NOTE: The time returned reflects all frequency change requests made by
CoreFrequency().

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Time cannot be converted to the specified unit. This occurs if the
actual elapsed time converted to the requested unit results in an elapsed time of
zero.

out time Pointer to the number of units that have elapsed since
the start of the simulation.

in units Units that represent the time parameter.
■ HEX_MILLISEC – Milliseconds
■ HEX_MICROSEC – Microseconds
■ HEX_NANOSEC – Nanoseconds
■ HEX_PICOSEC – Picoseconds

80-N2040-1786 Rev. AF 150

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.33 GetSimulatedCycleCount()

Returns the number of simulated cycles since the start of simulation.

Prototype

HEXAPI_Status GetSimulatedCycleCount(HEX_8u_t *cycles);

Parameters

Detailed description

The cycles returned are the actual number of cycles simulated by the simulator and may
or may not match the contents of the PCYCLE register.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Function was called before EndOfConfiguration().

out cycles Pointer to the number of simulated cycles since the start
of the simulation.

80-N2040-1786 Rev. AF 151

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.34 EmitPerfStatistics()

Prints the performance statistics into buffer.

Prototype

HEXAPI_Status EmitPerfStatistics(HEX_8u_t startTimeSec,
 HEX_8u_t startTimeUsec,
 HEX_8u_t endTimeSec,
 HEX_8u_t endTimeUsec,
 char *buffer,
 HEX_4u_t bufferSize);

Parameters

Detailed description

This routine puts a maximum of bufferSize bytes into the buffer. The input parameters
are starting and ending time (real time) used to calculate the ratio to real time and
simulator speed. The parameters are paired so that 1.1 seconds of real time is expressed
as 1 second and 100000 microseconds. The output printed to the buffer is of the
following form:

Done!
 T0: Insns=6761 Tcycles=3530
 T1: Insns=0 Tcycles=0
 T2: Insns=0 Tcycles=0
 T3: Insns=0 Tcycles=0
 T4: Insns=0 Tcycles=0
 T5: Insns=0 Tcycles=0
 Total: Insns=6761 Pcycles=21192
 Simulator speed=0.419547 Mips
 Ratio to Real Time (600 MHz) = ~1/456
 (elapsed time = 0.016115s)

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Buffer pointer is NULL.

■ HEX_STAT_ERROR – Function was called before EndOfConfiguration().

in startTimeSec Start time of the simulation run (in seconds).

in startTimeUsec Start time of the simulation run (in microseconds).

in endTimeSec End time of the simulation run (in seconds).

in endTimeUsec End time of the simulation run (in microseconds).

out buffer Pointer to the buffer from which the run statistics for
performance will be printed.

in bufferSize Maximum size of the data to be copied into buffer (in
bytes).

80-N2040-1786 Rev. AF 152

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.35 EnablePacketAnalysis()

Enables or disables the generation of instruction packet execution statistics in the file
specified in ConfigurePacketAnalysis().

NOTE: This function is supported only in Hexagon V6x processors. It returns HEX_STAT_ERROR
if it is called with any other version.

Prototype

HEXAPI_Status EnablePacketAnalysis(bool enable_disable);

Parameters

Detailed description

ConfigurePacketAnalysis() implicitly enables this function.

This operation is performed on the Hexagon processor and coprocessor concurrently.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Incorrect parameter.

■ HEX_STAT_ERROR – Invalid processor version.

in enable_disable Analysis mode.
■ TRUE – Enable packet analysis
■ FALSE – Disable packet analysis

80-N2040-1786 Rev. AF 153

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.36 ResetPacketAnalysis()

Resets internal data records used for packet analysis.

NOTE: This function is supported only for Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other processor version.

Prototype

HEXAPI_Status ResetPacketAnalysis(void)

Detailed description

This function is not required during initialization. ConfigurePacketAnalysis()will
generate the initial reset-to-zero.

This function can be called when the collected data is to be reset to zero.

To clear the internal data records for the next analysis, this function can be called
immediately after calling DumpPacketAnalysis().

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Invalid processor version.

80-N2040-1786 Rev. AF 154

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.37 DumpPacketAnalysis()

Dumps available internal data records that were collected for packet analysis

NOTE: This function is supported only for Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other processor version.

Prototype

HEXAPI_Status DumpPacketAnalysis(FILE *file)

Parameters

Detailed description

You must provide a valid FILE pointer and properly open and close the pointer. The FILE
pointer can be any valid filename.

This function is not required to dump the collected packet analysis data at the end of a
simulation. Properly deleting the HexagonWrapper object will generate the final dump.

This function can be called when the data is to be dumped before the simulator exits.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ FILE_ACCESS_ERROR – Bad file pointer.

■ HEX_STAT_ CANNOT_CONFIG – Invalid processor version.

in file Pointer to the file descriptor of an open stream to which
Hexagon packet statistics are to be written.

80-N2040-1786 Rev. AF 155

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.38 EnableInstHistogram()

Enables or disables the generation of instruction histogram data in a file specified in
ConfigureInstHistogram().

NOTE: This function is supported only in Hexagon V6x processors. It returns HEX_STAT_ERROR
if it is called with any other version.

Prototype

HEXAPI_Status EnableInstHistogram(bool enable_disable);

Parameters

Detailed description

ConfigureInstHistogram() implicitly enables this function.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – Incorrect parameter.

■ HEX_STAT_ERROR – Invalid processor version.

in enable_disable Instruction histogram mode.
■ TRUE – Enable generation of histogram data
■ FALSE – Disable generation of histogram data

80-N2040-1786 Rev. AF 156

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.39 ResetInstHistogram()

Resets internal data records used for an instruction histogram.

NOTE: This function is supported only for Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status ResetInstHistogram (void)

Detailed description

This function is not required during initialization. ConfigureInstHistogram() will
generate the initial reset-to-zero.

This function can be called when the collected data is to be reset to zero.

To reset internal data records for the next analysis, this function can be called
immediately after calling DumpInstHistogram().

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ CANNOT_CONFIG – Invalid processor version.

80-N2040-1786 Rev. AF 157

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.40 DumpInstHistogram()

Dumps internal data records collected for an instruction histogram.

NOTE: This function is supported only for Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status DumpInstHistogram (const char *msg)

Parameters

Detailed description

You must provide a valid string as a message. The message string appears in the dump file
followed by the dump contents.

The msg parameter can be NULL. You are responsible for dealing with this extra message
line if msg is not NULL. The Hexagon Profiler cannot handle unexpected strings mixed into
the data file.

The msg parameter is not a filename. There is no control over the filename used for an
instruction histogram besides the original ConfigureInstHistogram()call.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ FILE_ACCESS_ERROR – Bad file pointer.

■ HEX_STAT_ CANNOT_CONFIG – Invalid processor version.

in msg Pointer to the message string (not to a filename).

80-N2040-1786 Rev. AF 158

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.41 GetPowerStatistics()

Returns a set of three performance measurement values that can be plugged into an
equation that models the linear dynamic power for Hexagon processor cores.

Prototype

HEXAPI_Status GetPowerStatistics(bool reset,
 float *all_wait,
 float *avg_active,
 float *avg_pkt);

Parameters

Detailed description

By default these measurement values reflect the performance of the simulation since it
first began running. However, you can also reset the measurement values in order to limit
the collection of performance data to specific parts of a simulation.

The reset parameter controls whether the function resets the measurement values
(TRUE), or whether it returns their current values (FALSE).

NOTE: When reset is TRUE, the returned measurement values are invalid.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_INVALID_ARGS – One or more NULL input pointers; attempted to use with
an invalid processor version.

Power calculation equation

Rather than provide a function that computes the power equation, the simulator system
API provides only the function GetPowerStatistics to return certain parameters used
in the power equation. This is done for two reasons:

■ Some of the equation parameters are user-supplied.

■ It enables users to modify the equation if necessary.

in reset Performance measurement values.
■ TRUE – Reset the values
■ FALSE – Return the current values

out all_wait Pointer to the percentage of time spent in All-Wait mode.
Range: 0.0 to 1.0

out avg_active Pointer to the effective number of threads running (that is,
the number of threads running and not stalled, averaged
over time).

out avg_pkt Pointer to the average number of instructions per packet.

80-N2040-1786 Rev. AF 159

Qualcomm Hexagon Simulator User Guide Interfaces

Equation parameters

The power equation includes three types of parameters:

■ Parameters returned by GetPowerStatistics

■ Parameters supplied by the user

■ Parameters obtained from silicon measurements (or from pre-silicon estimates)

The user-supplied and silicon measurement parameters are statically defined for a given
processor core, while the parameters returned by GetPowerStatistics are dynamic
and generated during a simulation.

Table 4-2 lists the parameters used in the power equation.

Linear power model equation

The equation variables m, b, and P are defined in terms of the equation parameters listed
in Table 4-2:

m = (Pall - P1) / (Nmax – 1)
b = P1 - m
P = m * N + b

The (V3) empirical dynamic power scaling factor IPPadjustment is based on the average
number of instructions per packet:

IPPadjustment = 0.14 * (IPP - 2.2) + 1

Table 4-2 Power equation parameters

Type Name Detailed description
GetPowerStatistics allwaitFraction Percentage of time spent in All-Wait mode (all_wait in

GetPowerStatistics)

N Effective number of threads running (that is, the number of
threads running and not stalled, averaged over time
(avg_active in GetPowerStatistics)

IPP Average number of instructions per packet (avg_pkt in
GetPowerStatistics)

User-supplied frequencyHEXAGON Hexagon processor clock frequency normalized to 600 MHz

frequencyAXI AXI clock frequency, normalized to 133 MHz

v Core voltage normalized to the nominal voltage for the
technology

nMax Maximum number of hardware threads

Silicon measurements
(or pre-silicon estimates)

Pallwait All-wait dynamic power for AXI slave logic at 133 MHz

P1 Dhrystone power at maximum core frequency when a single
thread is running

Pall Dhrystone power at maximum core frequency when all threads
are running

80-N2040-1786 Rev. AF 160

Qualcomm Hexagon Simulator User Guide Interfaces

The dynamic power (represented by dynamicPower in the following example) is based
on the amount of time spent both running and in All-Wait mode:

runtimePower = (1 - allwaitFraction) * frequencyHEXAGON *
 IPPadjustment * P

allwaitPower = allwaitFraction * frequencyAXI * Pallwait

dynamicPower = (runtimePower + allwaitPower) * v2

80-N2040-1786 Rev. AF 161

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.42 EnablePmu()

Enables Hexagon PMU operation.

NOTE: This function is supported only in Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status EnablePmu(HEX_4u_t tnum=0xffffffff);

Parameters

Detailed description

The tnum parameter is reserved for future use and is not required in the function call:
EnablePmu(); // param not required - assigned default value

The PMU is automatically enabled before the simulation starts.

When the PMU is enabled, the simulator will collect PMU statistics. To begin collecting
PMU statistics in the middle of a program, you can do two things:

■ Call DisablePmu() at the beginning of the simulation, and then call EnablePmu()
after hitting a breakpoint

■ Call ResetPmu() after hitting a breakpoint (preferred method)

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support PMU.

in tnum Reserved for future use.

80-N2040-1786 Rev. AF 162

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.43 DisablePmu()

Disables Hexagon PMU operation.

NOTE: This function is supported only in Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status DisablePmu(HEX_4u_t tnum=0xffffffff);

Parameters

Detailed description

The tnum parameter is reserved for future use and is not required in the function call:
DisablePmu(); // param not required - assigned default value

The PMU is automatically enabled before the simulation starts.

When the PMU is enabled, the simulator will collect PMU statistics. To begin collecting
PMU statistics in the middle of a program, you can do two things:

■ Call DisablePmu() at the beginning of the simulation, and then call EnablePmu()
after hitting a breakpoint

■ Call ResetPmu() after hitting a breakpoint (preferred method)

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support PMU.

in tnum Reserved for future use.

80-N2040-1786 Rev. AF 163

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.44 ResetPmu()

Resets Hexagon PMU counts to zero.

NOTE: This function is supported only in Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status ResetPmu(HEX_4u_t tnum=0xffffffff);

Parameters

Detailed description

The tnum parameter is reserved for future use and is not required in the function call:
ResetPmu(); // param not required - assigned default value

The PMU is automatically enabled before the simulation starts.

When the PMU is enabled, the simulator will collect PMU statistics. To begin collecting
PMU statistics in the middle of a program, you can do two things:

■ Call DisablePmu() at the beginning of the simulation, and then call EnablePmu()
after hitting a breakpoint

■ Call ResetPmu() after hitting a breakpoint (preferred method)

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support PMU.

in tnum Reserved for future use.

80-N2040-1786 Rev. AF 164

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.45 DumpPmu()

Prints PMU statistics to a specified file.

NOTE: This function is supported only in Hexagon V6x processors. It returns
HEX_STAT_CANNOT_CONFIG if it is called with any other version.

Prototype

HEXAPI_Status DumpPmu(FILE *fp,
 int including_iss_only_stats,
 HEX_4u_t tnum=0xffffffff);

Parameters

Detailed description

The tnum parameter is reserved and is not required in the function call:
DumpPmu(f,1); // tnum not required - assigned default value

This function does not print certain information that is included in the PMU statistics file
generated by the standalone simulator (revision ID, cache size, full command line used to
launch the simulator).

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support the specified PMU
register.

in fp File to print PMU statistics to.

in including_iss_only_stats Statistics to print.
■ 0 – Include PMU statistics supported by the hardware
■ 1 – Include PMU statistics supported by both the

hardware and simulator

in tnum Reserved for future use.

80-N2040-1786 Rev. AF 165

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.46 GetPmuIndexedStats()

Reads a 64-bit value from the Hexagon PMU statistics register specified by the indicated
hardware thread and PMU register index.

Prototype

HEXAPI_Status GetPmuIndexedStats(HEX_4u_t tnum,
 HEX_4u_t pe_num,
 HEX_8u_t *value);

Parameters

Detailed description

Before calling GetPmuIndexedStats() to access a PMU register, you must first call
PmuIsStatModeled() to verify that the register is modeled for the current processor
version.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support the specified PMU
register.

in tnum Hardware thread of the target PMU register.

in pe_num Index value of the target PMU register.
Range: 0 to 255

out value Pointer to the value read from the PMU register.

80-N2040-1786 Rev. AF 166

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.47 PmuIsStatModeled()

Reads a 32-bit value that indicates the model status of the Hexagon PMU statistics register
specified by the indicated hardware thread and PMU register index.

Prototype

HEXAPI_Status PmuIsStatModeled(HEX_4u_t tnum,
 HEX_4u_t pe_num,
 HEX_4u_t *value);

Parameters

Detailed description

The model status value indicates whether the PMU register is modeled on the current
processor version.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support the specified PMU
register.

in tnum Hardware thread of the target PMU register.

in pe_num Index value of the target PMU register.
Range: 0 to 255

out value Pointer to the model status.
0 – PMU register is not modeled
1 – PMU register is modeled

80-N2040-1786 Rev. AF 167

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.48 PmuGetName()

Returns a pointer to a character string containing the symbolic name of the Hexagon PMU
statistics register specified by the indicated hardware thread and PMU register index.

Prototype

HEXAPI_Status PmuGetName(HEX_4u_t tnum,
 HEX_4u_t pe_num,
 const char **name);

Parameters

Detailed description

Before calling PmuGetName() to access a PMU register, you must first call
PmuIsStatModeled() to verify that the register is modeled for the current processor
version.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support the specified PMU
register.

in tnum Hardware thread of the target PMU register.

in pe_num Index value of the target PMU register.
Range: 0 to 255

out name Pointer to the character string containing the symbolic
name of the specified PMU register.

80-N2040-1786 Rev. AF 168

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.49 PmuIsMaskable()

Returns an integer value that indicates whether the specified PMU event is local (per thread)
or global (across all threads).

Prototype

HEXAPI_Status PmuIsMaskable(HEX_4u_t tnum,
 HEX_4u_t pe_num,
 HEX_4u_t *value);

Parameters

Detailed description

Before calling PmuIsMaskable() to determine the status of a PMU event, you must first
call PmuIsStatModeled() to verify that the corresponding register is modeled for the
current processor version.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_CANNOT_CONFIG – Processor version does not support the specified PMU
register.

in tnum Hardware thread of the target PMU register.

in pe_num Index value of the target PMU register.
Range: 0 to 255

out value Pointer to the value.
■ 0 – PMU event is non-maskable (global)
■ 1 – PMU event is maskable (local)

80-N2040-1786 Rev. AF 169

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.50 AxiSlaveAccess()

Performs a read or write operation on the AXI slave port.

Prototype

typedef void (*axi_bus_finished_callback) (
 void *, /* actually "system_t *" */
 int threadno, /* thread number */
 HEX_PA_t paddr, /* physical addr */
 HEX_4u_t width, /* size of access */
 int type, /* type of access */
 int id, /* identifier for access */
 unsigned char *dataptr);

HEXAPI_Status AxiSlaveAccess(HEX_4u_t tnum,
 HEX_PA_t pAddr,
 HEX_4u_t width,
 HEX_4u_t type,
 axi_bus_finished_callback cb,
 HEX_4u_t id,
 unsigned char *dataptr,
 HEX_4u_t *rval);

Parameters

Detailed description

If the cb parameter is specified as NULL, the operation is performed using a non-blocking
call, and the data is transferred immediately.

If cb is non-NULL, the operation is performed using a blocking call. In this case no data is
transferred during the call. Instead, the callback function referenced by cb is responsible
for calling WriteMemory() or ReadMemory() to initiate the actual data transfer.

For the transaction to complete, the return value must be HEX_STAT_SUCCESS and
*rval must be equal to 1.

The dataptr parameter is used only for write operations. For reads, ReadMemory()
must be called when cb is called.

in tnum Hardware thread.

in pAddr Address to access.

in width Size of access (in bytes).

in type Type of access (read or write).

in cb Callback function (called when transaction complete).

in id AXI transaction identifier.

in dataptr Pointer to the data pointer (source for write).

out rval Pointer to the value.
■ 0 – Transaction is rejected
■ 1 – Transaction is accepted

80-N2040-1786 Rev. AF 170

Qualcomm Hexagon Simulator User Guide Interfaces

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Invalid processor version.

80-N2040-1786 Rev. AF 171

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.51 ReconnectMode()

Specifies the behavior of the simulator when the associated debugger front-end exits.

Prototype

void ReconnectMode(int mode);

Parameters

Detailed description

If the simulator is configured to continue when the debugger front end exits, the
simulator continues to execute in its current state (on hold, running a simulation, and so
on) while also monitoring the socket connection. After a fixed period of time (such as 120
seconds) to allow TCP to wait out an obsoleted socket, the simulator reconnects if
another debugger front end attempts to connect to it.

Returns

None.

in mode Reconnect mode.
■ 1 – Simulator continues when the debugger front end

exits
■ 0 – Simulator exits when the debugger front end exits
Default: 0

80-N2040-1786 Rev. AF 172

Qualcomm Hexagon Simulator User Guide Interfaces

4.3.11.52 PostMessageToSimulator()

Posts a message to the simulator.

Prototype

HEXAPI_Status PostMessageToSimulator(HEXAPI_RxMsgType msg,
 void *param_addr);

Parameters

Detailed description

Depending on the message type, an optional data parameter can be specified as part of
the message.

The HEX_RXMSG_EXIT_EARLY message type can be used with callbacks such as
AddTimedCallback() to assert control over the simulator while it is running.

NOTE: The post operation is performed using a blocking call—it will not return until the
message is posted to the simulator. However, the simulator might not immediately
act on the message itself.

Returns

■ HEX_STAT_SUCCESS

■ HEX_STAT_ERROR – Message type is not recognized, or the message parameter
cannot be decoded.

in msg Message type.
HEX_RXMSG_EXIT_EARLY – Stop the Hexagon core by
triggering an asynchronous break (Run()). No parameter
is defined for this message.

NOTE: No other message types are currently defined.

in param_addr Pointer to the message parameter.

NOTE: If the specified message type does not define a
message parameter, this argument is ignored.

80-N2040-1786 Rev. AF 173

Qualcomm Hexagon Simulator User Guide Interfaces

4.4 Callbacks
This section describes the prototypes and expected functionality of the various callback
functions used for event notification from the simulator. All of these functions are expected
to have a C-callable interface.

All of these functions require a handle as their first argument. The simulator treats this
handle as the identifier for the entity (co-simulation or system simulation application). The
simulator never dereferences this handle; the requesting entity is to have a placeholder for
any context that might be required. A typical usage is to allocate and populate a context
structure for a co-simulation.

4.4.1 Co-simulation required functions
For a co-simulation library, the following functions must be defined:

■ GetCosimVersion()

■ UnRegisterCosim()

■ Either RegisterCosim() or RegisterCosimArgs()

The short form, RegisterCosim(), is for cosims that do not require arguments. For
example, a monitor that collects profiling information.

The long form, RegisterCosimArgs(), is for cosims that can be configured. For
example, a secondary interrupt controller whose configuration parameters might be its
size (the number of interrupts it can service), base address of its memory-mapped
registers, and primary Hexagon interrupt to which it is attached.

The RegisterCosim() and GetCosimVersion() functions are the first functions called by
the simulator; these calls allow the cosim to initialize itself.

■ The simulator first calls GetCosimVersion() to determine the API version compatibility.

■ Then the simulator calls either RegisterCosimArgs() or RegisterCosim():

❒ The simulator looks first for RegisterCosimArgs() and, if present, calls it and does
not look for RegisterCosim().

❒ If RegisterCosimArgs() does not exist, the simulator calls RegisterCosim().

■ The simulator calls UnRegisterCosim() during its shutdown procedure.

During the cosim initialization, the cosim can register to receive event notifications from the
simulator. Typically, a cosim registers a function to be called when any of its memory-mapped
registers are read or written, or it registers a function to be periodically called based on
elapsed simulator-time.

During the cosim shutdown procedure, the cosim is expected to clean up any resources that it
used (including removing callbacks, freeing memory, and so on) and prepare for shutdown.

80-N2040-1786 Rev. AF 174

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.1.1 GetCosimVersion()

Used by the simulator to determine the version of HexagonWrapper.h that was used to
build the cosim. This function is required for determining API compatibility.

Prototype

char * GetCosimVersion (void);

Detailed description

This global function is called by the simulator library before it calls RegisterCosim() or
RegisterCosimArgs(). The value that the cosim must return is defined in
HexagonWrapper.h as HEXAGON_WRAPPER_VERSION.

This is a required function that must be implemented in every cosim.

Returns

Version number of the cosim from HexagonWrapper.h (Section 4.3.6)

80-N2040-1786 Rev. AF 175

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.1.2 RegisterCosim()

Used by the simulator to allow a cosim to self-identify and register for callbacks.

Prototype

void * RegisterCosim(char **name,
 HexagonWrapper *simPtr);

Parameters

Detailed description

This function is called by the simulator after the call to GetCosimVersion(). The
HexagonWrapper pointer argument provides a handle to the API interface, which can be
used by the cosim to register for callbacks.

Before returning from the function call, the cosim must assign itself a unique name using
the **name argument.

This is a required function that must be implemented in every cosim, unless
RegisterCosim() is used instead.

Returns

Arbitrary pointer used to identify this cosim.

out name Double pointer to the name of the cosim.
This value is allocated and filled in by the cosim and
passed to the simulator.

in simPtr Pointer to the Hexagon simulator.

80-N2040-1786 Rev. AF 176

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.1.3 RegisterCosimArgs()

Used by the simulator to allow a cosim to self-identify, register for callbacks, and parse
arguments passed to the cosim.

Prototype

void * RegisterCosimArgs(char **name,
 HexagonWrapper *simPtr,
 char *args);

Parameters

Detailed description

This function is called by the simulator after the call to GetCosimVersion(). The
HexagonWrapper pointer argument provides a handle to the API interface, which can be
used by the cosim to register for callbacks.

Before returning from the function call, the cosim must assign itself a unique name using
the **name argument.

The args string can be parsed to process command line arguments passed to the cosim.

This is a required function that must be implemented in every cosim, unless
RegisterCosim()is used instead.

Returns

Arbitrary pointer used to identify this cosim.

out name Double pointer to the name of the cosim.
This value is allocated and filled in by the cosim and
passed to the simulator.

in simPtr Pointer to the Hexagon simulator.

in args Argument string to the cosim.

80-N2040-1786 Rev. AF 177

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.1.4 UnRegisterCosim()

Used by the simulator to allow a cosim to prepare for termination.

Prototype

void UnRegisterCosim(void *handle);

Parameters

Detailed description

This global function is called by the simulator library. The installed cosim is requested to
clean up and prepare for termination. The handle passed in is the same handle returned
from RegisterCosim() or RegisterCosimArgs().

This function is required and must be implemented in every cosim.

Returns

None.

in handle Pointer to the handle given to the simulator when the
cosim was registered.

80-N2040-1786 Rev. AF 178

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.2 Callback functions
All callback functions are expected to be C-callable. The handle passed to the callback
function is the same handle provided when the callback was registered with the simulator.

NOTE: The callback function names are for illustration purposes only; they can be renamed.

4.4.2.1 BusTransactionRequestCallback()

Called by the simulator library to initiate a bus transaction.

Prototype

HEXAPI_TransactionStatus BusTransactionRequestCallback(
 void *handle,
 HEX_PA_t addr,
 HEX_4u_t lengthInBytes,
 HEX_1u_t *data,
 HEX_4u_t requestID,
 HEXAPI_BusAccessType batype,
 HEX_4u_t threadNum,
 HEXAPI_BusBurstType bt);

Parameters

in handle The handle given to the simulator when the callback
request was added.

in addr Address of the write or read that corresponds to the
transaction.

in lengthInBytes Size of data in bytes.

in data Pointer to the data returned by external bus.

in requestID ID used to identify this bus transaction. This ID must be
provided to the BusTransactionFinished() call to
complete this bus request.

in batype Type of bus access.
■ HEX_INSTRUCTION_FETCH
■ HEX_DATA_READ
■ HEX_DATA_WRITE
■ HEX_DATA_CASTOUT
■ HEX_DATA_READ_LOCKED
■ HEX_DATA_WRITE_LOCKED
■ HEX_SYNCH
■ HEX_BARRIER
■ HEX_DATA_READ_PREFETCH
■ HEX_INSTRUCTION_PREFETCH
(cont.)

80-N2040-1786 Rev. AF 179

Qualcomm Hexagon Simulator User Guide Interfaces

Detailed description

This interface allows the external bus model to model data as well as timing behavior. To
indicate the end of the transaction, the external device calls
BusTransactionFinished()

A batype value of HEX_DEBUG_READ, HEX_DEBUG_WRITE, HEX_DEBUG_READ_LOCKED, or
HEX_DEBUG_WRITE_LOCKED indicates a debug-related transaction. In this case the cosim
should perform the requested action and immediately complete the request by calling
BusTransactionFinished(). If the transaction cannot be completed, an error is
returned.

NOTE: Debug read and write transactions are also designated with a requestID of
0xFFFFFFFF.

Returns

■ TRANSACTION_SUCCESS

■ TRANSACTION_REPLAY – Reissue the transaction.

■ TRANSACTION_FAIL – Transaction failure.

■ TRANSACTION_LOCKED – Memory is locked.

in batype
(cont.)

■ HEX_DEBUG_READ
■ HEX_DEBUG_WRITE
■ HEX_DEBUG_READ_LOCKED
■ HEX_DEBUG_WRITE_LOCKED

in threadNum The hardware thread number of the thread making the
request.

in bt Type of bus burst.
■ HEX_BURST_FIXED – Multiple data items to the

same address, such as FIFO
■ HEX_BURST_INCREMENTAL – Multiple data items

with incremental addresses
■ HEX_BURST_WRAPPED – Incremental addresses

with wraparound, such as filling a cache line

80-N2040-1786 Rev. AF 180

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.2.2 TimedCallback()

Called by the simulator library at certain intervals, provided the cosim registered to be called
using AddTimedCallback().

Prototype

void TimedCallback(void *handle);

Parameters

Returns

None.

4.4.2.3 MemoryWasWrittenCallback()

Called by the simulator library when data is written to system memory (inclusive of cache,
TCM, and bus transactions), provided the cosim registered to be called using
AddMemWasWrittenCallback().

Prototype

void MemoryWasWrittenCallback(void *handle,
 HEX_PA_t addr,
 HEX_8u_t value,
 HEX_4u_t sizeInBytes);

Parameters

Returns

None.

in handle Pointer to the handle given to the simulator when the
callback request was added.

in handle Pointer to the handle given to the simulator when the
callback request was added.

in addr Address of the memory write.

in value Value written to memory.

in sizeInBytes Size of the data (1, 2, 4, or 8 bytes).

80-N2040-1786 Rev. AF 181

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.2.4 MemoryWasReadCallback()

Called by the simulator library when data is read from system memory (inclusive of cache,
TCM, and bus transactions), provided the cosim registered to be called using
AddMemWasReadCallback().

Prototype

void MemoryWasReadCallback(void *handle,
 HEX_PA_t addr,
 HEX_8u_t value,
 HEX_4u_t sizeInBytes);

Parameters

Returns

None.

4.4.2.5 FrequencyChangeCallback()

Called by the simulator library when the Hexagon core frequency is changed by an external
agent, provided the cosim registered to be called using AddFrequencyChangeCallback().

Prototype

void FrequencyChangeCallback(void *handle,
 HEX_8u_t coreFrequency);

Parameters

Returns

None.

in handle Pointer to the handle given to the simulator when the
callback request was added.

in addr Address of the memory read.

in value Value read from memory.

in sizeInBytes Size of the data (1, 2, 4, or 8 bytes).

in handle Pointer to the handle given to the simulator when the
callback request was added.

in coreFrequency New frequency of the Hexagon core.

80-N2040-1786 Rev. AF 182

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.2.6 PCCallback()

Called by the simulator library when the Hexagon processor is ready to commit the
instruction at the PC specified with the AddPCCallback() function.

Prototype

void PCCallback(void *handle);

Parameters

Returns

None.

4.4.2.7 CoreReadyCallback()

Called by the simulator library when the core’s CORE_READY signal changes state, provided
the cosim registered to be called using AddCoreReadyCallback(). This function indicates
whether the core is ready to accept second-level interrupts.

Prototype

void CoreReadyCallback(void *handle,
 HEXAPI_CoreReadyState polarity);

Parameters

Returns

None.

in handle Pointer to the handle given to the simulator when the
callback request was added.

in handle Pointer to the handle given to the simulator when the
callback request was added.

in polarity State of polarity.
■ CORE_READY
■ CORE_NOT_READY

80-N2040-1786 Rev. AF 183

Qualcomm Hexagon Simulator User Guide Interfaces

4.4.3 Cosim example
The following example implements a simple cosim using the system simulation APIs. This
cosim merely prints a message after a specified time period has elapsed.

#include "HexagonWrapper.h"

typedef struct { // Simple context structure
 int interval;
 HexagonWrapper *simPtr;
} TimerContext;
void timed_callback(void *handle); // Routine to be called
int parseAndValidateArgs(char *args, TimerContext *c);

extern "C" { void INTERFACE *RegisterCosimArgs(char *name,
 HexagonWrapper *simPtr,
 char *args)
{
 int cerror;
 TimerContext *pTimer = (TimerContext *)
 calloc(1, sizeof(TimerContext);
 pTimer->simPtr = simPtr; // Save pointer
 // Parse options for cosim - sets callback interval
 cerror = parseAndValidateArgs(args, pTimer);
 if (cerror == 0) {
 printArgUsage(cerror);
 exit(0);
 }
 // Get called back every <interval>ns
 simPtr->AddTimedCallback(pTimer, pTimer->interval,
 HEX_NANOSEC, timed_callback);
 return (void *) pTimer;
} }

void timed_callback(void *handle)
{
 TimerContext c = (TimerContext *) handle;
 printf("Called back, interval=%dns\n", c->interval);
 c->simPtr->RemoveTimedCallback((void *) c);
}

int parseAndValidateArgs(char *args, TimerContext *c)
{
 return (c->interval = atoi(args)) != 0);
}

extern "C" { void INTERFACE UnRegisterCosim(void *handle)
{
 TimerContext c = (TimerContext *) handle;

 // Free resources allocated. Should also remove callback, but
 // that was done above.

 free(c);
}

80-N2040-1786 Rev. AF 184

Qualcomm Hexagon Simulator User Guide Interfaces

char * INTERFACE GetCosimVersion(void)
{ // Required vor version checking by the simulator
 return HEXAGON_WRAPPER_VERSION;
}
}

Build this cosim

1. Compile the cosim and link it into a shared library.

2. Build a cosim configuration file that contains the pathname to the shared library followed
by an argument specifying the interval after which the message is printed. For example:

/<path_to_library>/cosim.so 200

NOTE: This command specifies that the cosim should be loaded and the string, 200, passed
to the cosim initialization routine (RegisterCosimArgs()).

3. Specify the cosim configuration file to the simulator either by command-line option or
API function (see Section 4.3.7 for details).

Output

When the cosim executes, it prints out the message after 200ns of elapsed simulation time.

80-N2040-1786 Rev. AF 185

A Statistics

The simulator collects execution statistics on the applications it executes. The statistics
summarize the various types of Hexagon processor events that occurred while the application
was running.

When an application terminates, the simulator writes the collected statistics to a dedicated
statistics file (Section 3.3.9). The symbols that appear in the file define the types of statistics
collected.

Because the types of execution events vary across the Hexagon processors, different types of
statistics are collected for each processor version. For more information, see the Qualcomm
Hexagon Programmer’s Reference Manual.

	1 Introduction
	1.1 Conventions
	1.2 Technical assistance

	2 Overview
	2.1 Processor versions
	2.2 Type definitions

	3 Use the simulator
	3.1 Input to the simulator
	3.2 Run the simulator
	3.3 Options
	3.3.1 Simulator information
	3.3.2 Status messages
	3.3.3 Processor version
	3.3.4 Processor attributes
	3.3.5 Simulation environment
	3.3.6 RTOS applications
	3.3.7 Memory initialization
	3.3.8 Processor modeling
	3.3.9 TCM modeling
	3.3.10 System configuration modeling
	3.3.11 Bus modeling
	3.3.12 gprof Profiling
	3.3.13 Statistics
	3.3.14 Trace
	3.3.15 Cache trace
	3.3.16 Filtering

	3.4 Screen messages
	3.4.1 Additional information
	3.4.2 Idle modeling

	3.5 Warning messages
	3.6 Profile data files
	3.7 Trace files
	3.7.1 Program counter trace files
	3.7.2 Memory trace files
	3.7.3 Bus trace files
	3.7.4 Micro-architecture trace files
	3.7.5 Instruction cache trace files
	3.7.6 Data cache trace files
	3.7.7 L2 cache trace files

	3.8 PMU statistics files
	3.9 Packet statistics files

	4 Interfaces
	4.1 Timer interface
	4.1.1 Timer functions
	4.1.1.1 hexagon_sim_end_timer()
	4.1.1.2 hexagon_sim_init_timer()
	4.1.1.3 hexagon_sim_prof_off()
	4.1.1.4 hexagon_sim_prof_on()
	4.1.1.5 hexagon_sim_show_timer()
	4.1.1.6 hexagon_sim_start_timer()

	4.1.2 Cycle count function
	4.1.2.1 hexagon_sim_read_pcycles()

	4.2 Cache interface
	4.2.1 Cache functions
	4.2.1.1 hexagon_buffer_clean()
	4.2.1.2 hexagon_buffer_cleaninv()
	4.2.1.3 hexagon_buffer_inv()

	4.3 Simulator System API
	4.3.1 Simulator components
	4.3.2 Invoke simulator in Standalone mode
	4.3.3 Invoke simulator in System Simulation mode
	4.3.4 File handling
	4.3.5 Status results
	4.3.6 Simulator constructor (HexagonWrapper)
	4.3.7 Co-simulation
	4.3.7.1 Build co-simulations
	4.3.7.2 Execute co-simulations

	4.3.8 Simulator configuration
	4.3.8.1 ConfigureRemoteDebug()
	4.3.8.2 ConfigureCosim()
	4.3.8.3 ConfigureOSAwareness()
	4.3.8.4 ConfigureExecutableBinary()
	4.3.8.5 ConfigureAppCommandLine()
	4.3.8.6 ConfigureSimStdin()
	4.3.8.7 ConfigureSimStdout()
	4.3.8.8 ConfigureSimStderr()
	4.3.8.9 ConfigureCoreFrequency()
	4.3.8.10 ConfigureTimingMode()
	4.3.8.11 ConfigureBypassIdle()
	4.3.8.12 ConfigureAHB()
	4.3.8.13 ConfigureAXI2()
	4.3.8.14 ConfigureBusRatio()
	4.3.8.15 ConfigureAHBBusRatio()
	4.3.8.16 ConfigureAXI2BusRatio()
	4.3.8.17 ConfigureBusPenalty()
	4.3.8.18 ConfigureAHBBusPenalty()
	4.3.8.19 ConfigureAXI2BusPenalty()
	4.3.8.20 ConfigureTCM()
	4.3.8.21 ConfigureSubsystemBase()
	4.3.8.22 ConfigureL2tcmBase()
	4.3.8.23 ConfigureL2cfgBase()
	4.3.8.24 ConfigureEtmcfgBase()
	4.3.8.25 ConfigureMemFill()
	4.3.8.26 ConfigureMemFillRandom()
	4.3.8.27 ConfigureNULLPointerBehavior()
	4.3.8.28 ConfigureCoreDump()
	4.3.8.29 ConfigureGProf()
	4.3.8.30 ConfigureProfileMode()
	4.3.8.31 ConfigurePmuStatisticsFile()
	4.3.8.32 ConfigurePacketAnalysis()
	4.3.8.33 ConfigureInstHistogram()
	4.3.8.34 ConfigurePCRangeFilter()
	4.3.8.35 ConfigureTimeRangeFilter()
	4.3.8.36 EndOfConfiguration()
	4.3.8.37 SetTracing()
	4.3.8.38 ConfigureMaxPcycle()

	4.3.9 External device API
	4.3.9.1 AddBusAccessCallback()
	4.3.9.2 RemoveBusAccessCallback()
	4.3.9.3 AddFrequencyChangeCallback()
	4.3.9.4 RemoveFrequencyChangeCallback()
	4.3.9.5 AddTimedCallback()
	4.3.9.6 AddTimedCallbackFP()
	4.3.9.7 AddOneShotTimedCallback()
	4.3.9.8 RemoveTimedCallback()
	4.3.9.9 AddMemWasWrittenCallback()
	4.3.9.10 RemoveMemWasWrittenCallback()
	4.3.9.11 AddMemWasReadCallback()
	4.3.9.12 RemoveMemWasReadCallback()
	4.3.9.13 AddPCCallback()
	4.3.9.14 RemovePCCallback()
	4.3.9.15 AddBeforeSimulationStartsCallback()
	4.3.9.16 AddEndOfSimulationCallback()
	4.3.9.17 AddCoreReadyCallback()
	4.3.9.18 AddPrivilegeChangeCallback()
	4.3.9.19 AddQtimerCallback()
	4.3.9.20 GetAPIVersion()
	4.3.9.21 PrintBuildTag()

	4.3.10 Runtime simulator calls
	4.3.10.1 EVB()
	4.3.10.2 CoreFrequency()
	4.3.10.3 VerboseMode()
	4.3.10.4 AddSymbolFile()

	4.3.11 Simulator control
	4.3.11.1 LoadExecutableBinary()
	4.3.11.2 Run()
	4.3.11.3 Step()
	4.3.11.4 StepTime()
	4.3.11.5 SetInterrupt()
	4.3.11.6 AssertNMI
	4.3.11.7 DeassertNMI()
	4.3.11.8 ClearInterrupt
	4.3.11.9 ClearAllInterrupts()
	4.3.11.10 SetBreakpoint
	4.3.11.11 ClearBreakpoint()
	4.3.11.12 ClearAllBreakpoints()
	4.3.11.13 AssertReset()
	4.3.11.14 DeassertReset()
	4.3.11.15 BusTransactionFinished()
	4.3.11.16 WriteThreadRegister()
	4.3.11.17 ReadThreadRegister()
	4.3.11.18 WriteVectorRegister()
	4.3.11.19 ReadVectorRegister()
	4.3.11.20 WriteGlobalRegister()
	4.3.11.21 ReadGlobalRegister()
	4.3.11.22 WriteTLBRegister()
	4.3.11.23 ReadTLBRegister()
	4.3.11.24 WriteMemory()
	4.3.11.25 ReadMemory()
	4.3.11.26 WriteVirtual()
	4.3.11.27 ReadVirtual()
	4.3.11.28 ReadSymbolValue()
	4.3.11.29 TranslateVirtualToPhysical()
	4.3.11.30 CycleToTime()
	4.3.11.31 TimeToCycles()
	4.3.11.32 GetElapsedSimulationTime()
	4.3.11.33 GetSimulatedCycleCount()
	4.3.11.34 EmitPerfStatistics()
	4.3.11.35 EnablePacketAnalysis()
	4.3.11.36 ResetPacketAnalysis()
	4.3.11.37 DumpPacketAnalysis()
	4.3.11.38 EnableInstHistogram()
	4.3.11.39 ResetInstHistogram()
	4.3.11.40 DumpInstHistogram()
	4.3.11.41 GetPowerStatistics()
	4.3.11.42 EnablePmu()
	4.3.11.43 DisablePmu()
	4.3.11.44 ResetPmu()
	4.3.11.45 DumpPmu()
	4.3.11.46 GetPmuIndexedStats()
	4.3.11.47 PmuIsStatModeled()
	4.3.11.48 PmuGetName()
	4.3.11.49 PmuIsMaskable()
	4.3.11.50 AxiSlaveAccess()
	4.3.11.51 ReconnectMode()
	4.3.11.52 PostMessageToSimulator()

	4.4 Callbacks
	4.4.1 Co-simulation required functions
	4.4.1.1 GetCosimVersion()
	4.4.1.2 RegisterCosim()
	4.4.1.3 RegisterCosimArgs()
	4.4.1.4 UnRegisterCosim()

	4.4.2 Callback functions
	4.4.2.1 BusTransactionRequestCallback()
	4.4.2.2 TimedCallback()
	4.4.2.3 MemoryWasWrittenCallback()
	4.4.2.4 MemoryWasReadCallback()
	4.4.2.5 FrequencyChangeCallback()
	4.4.2.6 PCCallback()
	4.4.2.7 CoreReadyCallback()

	4.4.3 Cosim example

	A Statistics

